GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • 2020-2024  (3)
Document type
Years
Year
  • 1
    Publication Date: 2023-05-31
    Description: To identify environmental causes for past changes in vegetation in subtropical East Asia, we present carbon isotope compositions of plant-wax n-alkanes and provide estimates of the C4-plant contribution across the past four glacial terminations and interglacials, based on cores recovered from the northern South China Sea. Our results show a comparable C4-plant contribution between the Last Glacial Maximum (LGM) and the Holocene. An increase of the C4-plant contribution by 15–20% is found for Terminations IV, II and I relative to subsequent interglacial peaks, coeval with an expansion of Cyperaceae and Poaceae. In contrast, Termination V reveals a lower C4-plant contribution than Marine Isotope Stage (MIS) 11c. The data exhibit a long-term trend, with a stepwise increase of the C4-plant contribution across interglacials MIS 11c, 9e, 7e and 1. We suggest that no substantial changes in humidity levels over glacial-interglacial cycles occurred facilitating a similar C3/C4-plant ratio for the LGM and the Holocene. Instead, deglacial sea-level rises caused an extensive development of floodplains and wetlands on the exposed continental shelf, providing habitats for the spread of C4 sedges and grasses. The progressive subsidence of Chinese coastal areas and the broadening of the continental shelf over the late Quaternary explains the nearly absence of C4 plant occurrence during Termination V and a gradual increase of the C4-plant contribution across interglacial peaks. Taken together, changes in coastal environments should be considered when interpreting marine-based vegetation reconstructions from subtropical Asia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-06-21
    Description: Tropical and subtropical rivers deliver large quantities of terrestrial organic carbon (OCterr) to the ocean, acting as a crucial part of the global carbon cycle, but little is known about the timescale and efficiency of its transport to and in the adjacent coastal sea. Here we examined source-specific biomarker (fatty acids, FAs) contents and isotope compositions in surface sediments in an alongshore transect southwestward from the Pearl River mouth. The C28+30, rather than other long-chain saturated FAs, were found to be the most representative for OCterr, and a plant wax mean age of 3060 ±90 yr (resulting from protracted storage) was estimated in the Pearl River watershed from the 14C age of C28+30FA in a river mouth sample. A compilation of plant wax mean ages in global (sub)tropical river systems including this study suggests that regional differences in climate and morphology may have a limited impact on plant wax mean ages in (sub)tropical regions. A four-source mixing model based on bulk OC and biomarker isotope compositions demonstrated that surface sediments in the Pearl River-derived mudbelt consist of 0.15–0.36 wt.% marine OC, 0.03–0.13 wt.% riverine primary production-derived OC, 0.18–0.49 wt.% soil OC, and 0.07–0.16 wt.% fossil OC. The mean burial efficiency of fossil and soil OC is ∼85% and 49%, respectively, indicating the refractory nature of fossil OC but a significant loss of soil OC due to remineralization during transport in the marine environment before final burial. Over longer timescales, the OCterrloss experienced during transport may, thus, to some extent reduces the capacity of terrestrial ecosystems (particularly soils) as CO2sinks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Journal of Geophysical Research Biogeosciences, American Geophysical Union (AGU), 128(10), ISSN: 2169-8953
    Publication Date: 2024-04-11
    Description: Human activities have increasingly changed terrestrial particulate organic carbon (POC) export to the coastal ocean since the Industrial Age (19th century). However, the influence of human perturbations on the composition and flux of terrestrial biospheric and petrogenic POC sub-pools remains poorly constrained. Here, we examined 13C and 14C compositions of bulk POC and source-specific biomarkers (fatty acids, FA) from two nearshore sediment cores collected in the Pearl River-derived mudbelt, to determine the impacts of human perturbations of the Pearl River watershed on the burial of terrestrial POC in the coastal ocean over the last century. Our results show that although agricultural practices and deforestation during the 1930s–1950s increased C4 plant coverage in the watershed, the export fluxes of terrestrial biospheric and petrogenic POC remained rather unchanged; however, added perturbations since 1974, including increasing coal consumption, embankment and dam constructions caused massive export of both petrogenic POC and relatively fresh terrestrial biospheric POC from the river delta. Our data reveal that human activities substantially enhance the transfer of petrogenic POC and fresh biospheric POC to the coastal ocean after ca. 1974, with the latter process acting as an important sink for anthropogenic CO2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...