GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2020-02-06
    Description: Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial–interglacial climate variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Despite its great ecological importance, the main factors governing tree cover in tropical savannas as well as savanna-forest boundaries are still largely unknown. Here we address this issue by investigating marine sediment records of long-chain n-alkane stable carbon (δ13Cwax) and hydrogen (δDwax) isotopes from a core collected off eastern tropical South America spanning the last ca. 45 thousand years. While δ13Cwax is a proxy for the main photosynthetic pathway of terrestrial vegetation, tracking the relative proportion of C3 (mainly trees) versus C4 (mainly grasses) plants, δDwax is a proxy for continental precipitation, tracking the intensity of rainfall. The investigated core was collected off the mouth of the São Francisco River drainage basin, a tropical savanna-dominated region with dry austral autumn, winter and spring. On top of millennial-scale changes, driven by anomalies in the amount of precipitation associated with Heinrich Stadials, we identify a marked obliquity control over the expansion and contraction of tree and grass cover. During periods of maximum (minimum) obliquity, trees (grasses) reached maximum coverage. We suggest that maximum (minimum) obliquity decreased (increased) the length of the dry season allowing (hampering) the expansion of tree-dominated vegetation. Periods of maximum obliquity induced an anomalous heating (cooling) of the summer (winter) hemisphere that in combination with a delayed response of the climate system slightly increased autumn precipitation over the São Francisco River drainage basin, through a shift of the Intertropical Convergence Zone towards or further into the anomalously heated hemisphere. We found that atmospheric CO2 concentration has only a secondary effect on tree cover. Our results underline the importance of the dry season length as a governing factor in the long-term control of tree cover in tropical landscapes.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-08-26
    Description: The relative abundance of the C32 1,15 long-chain alkyl diol (LCD) is an emerging proxy for the input of riverine aquatic particulate organic carbon (POC) into coastal oceans. This compound has the potential to complement other established proxies reflecting riverine terrestrial POC input and allows for a more nuanced assessment of riverine POC export to coastal seas. The current understanding of this proxy is, however, limited. In this study, we compare different indices for riverine sediment input to coastal marine waters (i.e. C32 1,15-LCD, BIT index and Fe/Ca ratio) in a source-to-sink assessment in the Amazon River drainage system and the northeast South American continental margin, and we test their down-core applicability in a marine gravity core containing late Pleistocene fluvial Amazonian sediments. We show that the relative abundance of the C32 1,15-LCD is highest in water bodies with low flow velocity and low turbidity such as the downstream portion of lowland tributaries and floodplain lakes. Relative C32 1,15-LCD abundance is lowest in Andean white water tributaries where autotrophic productivity is hindered by high turbidity and high flow velocity. We also find that suspended particulate matter from all major tributaries during the extreme 2015 dry season has a similar LCD distribution to that of floodplain lakes. This indicates that the chemical composition of the tributaries is less relevant for the LCD distribution than their physical properties such as flow velocity and turbidity. Results from marine surface sediments offshore the Amazon River estuary show significant positive correlations between all three studied proxies. In contrast, we find that the relative C32 1,15-LCD abundance in the down-core record is anti-correlated to the BIT index and Fe/Ca ratio. While BIT index and Fe/Ca ratio show high (low) values during Heinrich stadials (Dansgaard-Oeschger interstadials), the C32 1,15-LCD proxy shows the opposite signal. BIT values are also higher during Marine Isotope Stage (MIS) 2 than during MIS 3, in contrast to trends in the C32 1,15-LCD proxy. We posit that this pattern arises from a reduction in relative C32 1,15-LCD abundance and total LCD productivity in the Amazon River during MIS 2 when less-humid conditions and lower sea level led to reduced area of floodplains. During Heinrich stadials, Andean sediment input increased and led to higher turbidity that resulted in lower C32 1,15-LCD production. Our study shows that major changes in water discharge, sediment transport and river morphology can lead to discrepancies between the BIT index and the relative abundance of the C32 1,15-LCD. Thus, we suggest that Amazonian aquatic and terrestrial POC pools had contrasting responses to changes related to both climate (e.g. increased Andean precipitation) and river morphology (e.g. steeper along-channel slope due to falling and low stand sea level).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-10
    Description: The temporal succession of changes in Amazonian hydroclimate during Heinrich Stadial 1 (HS1) (ca. 18–14.7 cal ka BP) is currently poorly resolved. Here we present HS1 records based on isotope, inorganic and organic geochemistry from a marine sediment core influenced by the Amazon River discharge. Our records offer a detailed reconstruction of the changes in Amazonian hydroclimate during HS1, integrated over the basin. We reconstructed surface water hydrography using stable oxygen isotopes (δ18O) and Mg/Ca-derived paleotemperatures from the planktonic foraminifera Globigerinoides ruber, as well as salinity changes based on stable hydrogen isotope (δD) of palmitic acid. We also analyzed branched and isoprenoid tetraether concentrations, and compared them to existing bulk sediment ln(Fe/Ca) data and vegetation reconstruction based on stable carbon isotopes from n-alkanes, in order to understand the relationship between continental precipitation, vegetation and sediment production. Our results indicate a two-phased HS1 (HS1a and HS1b). During HS1a (18–16.9 cal ka BP), a first sudden increase of sea surface temperatures (SST) in the western equatorial Atlantic correlated with the slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and the associated southern hemisphere warming phase of the bipolar seesaw. This phase was also characterized by an increased delivery of terrestrial material. During HS1b (16.9–14.8 cal ka BP), a decrease in terrestrial input was, however, associated with a marked decline of seawater δ18O and palmitic acid δD. Both isotopic proxies independently indicate a drop in sea surface salinity (SSS). A number of records under the influence of the North Brazil Current, in contrast, indicate increases in SST and SSS resulting from a weakened AMOC during HS1. Our records thus suggest that the expected increase in SSS due to the AMOC slowdown was overridden by a two-phased positive precipitation anomaly in Amazonian hydroclimate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-14
    Description: Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers.Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the dD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The d13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our d13C results show depleted d13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane dD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane dD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane dD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield dD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-13
    Description: The western tropical Atlantic plays an important role in the interhemispheric redistribution of heat during millennial-scale changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The proper evaluation of this role depends on a clear understanding of sea surface temperature (SST) variations during AMOC slowdown periods like Heinrich Stadials (HS) in the western tropical Atlantic. However, published SST records from the western tropical Atlantic between ca. 4°S and 7°N show inconsistencies that are apparently related to the employed temperature proxy (i.e., Mg/Ca versus alkenone unsaturation index ). In general, while Mg/Ca values indicate warming during Heinrich Stadials, values show cooling. To assess this issue, we sampled core GeoB16224-1 retrieved off French Guiana (i.e., 6°39.38′N) and reconstructed water temperatures at high resolution using Mg/Ca on the foraminifera species Globigerinoides ruber, , TEX86 and modern analogue technique (MAT) transfer functions using planktonic foraminifera assemblages calibrated for 50 m water depth. Our results show that Mg/Ca and TEX86 values recorded an increase in SST related to AMOC slowdown. Conversely, and MAT values registered a decrease in temperatures during HS3 and HS1. Our and Mg/Ca results thus confirm the previously reported inconsistency for the period between 48–13 cal ka BP. We suggest that several non-thermal physiological effects probably imparted a negative temperature bias on the temperatures during Heinrich Stadials. However, MAT-based temperatures show similar variability with -based temperatures. Hence, we also suggest that during severe slowdown periods of the AMOC, a steeper meridional temperature gradient together with a southward shift of the Intertropical Convergent Zone produced not only an increase in SST but also a stronger upper water column stratification and a shoaling of the thermocline, decreasing subsurface temperatures. Our new high resolution temperature records allow a better characterization of the thermal response of the upper water column in the tropical western Atlantic to slowdown events of the AMOC, reconciling previously discrepant records.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-02-26
    Description: ARTICLE INFO Keywords: Amazonia GDGT Amazon River Biomarkers Compound-specific isotopes N-Alkanes Paleoclimate proxies Plant waxes ABSTRACT Lipid biomarker proxies from terrigenous sediments have been extensively used to understand variations in paleoenvironmental conditions, but many of the mechanisms affecting these proxies during riverine transport are still poorly understood. Here, we analyze glycerol dialkyl glycerol tetraether (GDGT) distributions and n-alkane isotopic compositions of soils and sediments from the Amazon River Basin. Our dataset includes suspended sediments of the Amazon River and its main tributaries, as well as soils and sediments of the Xingu River, a large clearwater tributary draining the easternmost part of the Amazon River Basin. Our sampling design aimed at understanding the processes behind spatially distinct GDGT distributions and n-alkane isotopic signatures across lowland Amazonia. Gradual changes in the fractional abundances of isoprenoid GDGTs and in 5- and 6- methyl branched GDGT ratios in suspended sediments of the Amazon River towards its mouth suggest that riverine production is an increasingly important control on the distribution of GDGTs in the lower parts of the system, while values from the western parts are more in line with a dominant soil sourcing. In the Xingu River, indices based on the fractional abundances of branched GDGTs and long-chain n-alkanes demonstrate a strong contri- bution of terrestrial organic material during the high-water season and an important aquatic component during low-water season. Meanwhile, average stable carbon (δ13C) and hydrogen (δD) isotopic signatures of long-chain n-alkanes in soils, riverbed and suspended sediments of the Xingu River are similar and reinforce the relatively conservative behaviour of these proxies within large river systems. The average compound-specific δ13C signa- tures of sediments in the Xingu River are within the expected range for C3 vegetation and do not seem to capture the signals from the nearby deforested areas. n-Alkanes δD signals in the Xingu Basin are similar to values ob- tained in the Amazon River mouth and indicate that n-alkanes sourced from easternmost Amazonian lowlands may predominate over signals from western areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-03-14
    Keywords: Banagi; Conductivity; DEPTH, soil; Elevation of event; Event label; GDGTs; Kemarishe; Kirawira; Latitude of event; Longitude of event; Makoma; Malambo Road; MULT; Multiple investigations; Musabi; Naabi Hill; Ndabakal; Nyaruswiga; Optional event label; pH; Salinity; Sample code/label; Serengeti; Serengeti_soil_Banagi; Serengeti_soil_Kemarishe; Serengeti_soil_Kirawira; Serengeti_soil_Makoma; Serengeti_soil_Malambo_Road; Serengeti_soil_Musabi; Serengeti_soil_Naabi_Hill; Serengeti_soil_Ndabaka; Serengeti_soil_Nyaruswiga; Serengeti_soil_Shifting_Sands; Serengeti_soil_Simba_Kopjes; Shifting Sands; Simba Kopjes; Soil; Total dissolved solids
    Type: Dataset
    Format: text/tab-separated-values, 492 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Crivellari, Stefano; Chiessi, Cristiano Mazur; Kuhnert, Henning; Häggi, Christoph; Portilho-Ramos, Rodrigo Costa; Zeng, Jing-Ying; Zhang, Yancheng; Schefuß, Enno; Mollenhauer, Gesine; Hefter, Jens; Alexandre, Felipe; Mulitza, Stefan; Sampaio, Gilvan (2018): Increased Amazon freshwater discharge during late Heinrich Stadial 1. Quaternary Science Reviews, 181, 144-155, https://doi.org/10.1016/j.quascirev.2017.12.005
    Publication Date: 2023-03-03
    Description: The temporal succession of changes in Amazonian hydroclimate during Heinrich Stadial 1 (HS1) (ca. 18-14.7 cal ka BP) is currently poorly resolved. Here we present HS1 records based on isotope, inorganic and organic geochemistry from a marine sediment core influenced by the Amazon River discharge. Our records offer a detailed reconstruction of the changes in Amazonian hydroclimate during HS1, integrated over the basin. We reconstructed surface water hydrography using stable oxygen isotopes (d18O) and Mg/Ca-derived paleotemperatures from the planktonic foraminifera Globigerinoides ruber, as well as salinity changes based on stable hydrogen isotope (dD) of palmitic acid. We also analyzed branched and isoprenoid tetraether concentrations, and compared them to existing bulk sediment ln(Fe/Ca) data and vegetation reconstruction based on stable carbon isotopes from n-alkanes, in order to understand the relationship between continental precipitation, vegetation and sediment production. Our results indicate a two-phased HS1 (HS1a and HS1b). During HS1a (18-16.9 cal ka BP), a first sudden increase of sea surface temperatures (SST) in the western equatorial Atlantic correlated with the slowdown of the Atlantic Meridional Overturning Circulation (AMOC) and the associated southern hemisphere warming phase of the bipolar seesaw. This phase was also characterized by an increased delivery of terrestrial material. During HS1b (16.9-14.8 cal ka BP), a decrease in terrestrial input was, however, associated with a marked decline of seawater d18O and palmitic acid dD. Both isotopic proxies independently indicate a drop in sea surface salinity (SSS). A number of records under the influence of the North Brazil Current, in contrast, indicate increases in SST and SSS resulting from a weakened AMOC during HS1. Our records thus suggest that the expected increase in SSS due to the AMOC slowdown was overridden by a two-phased positive precipitation anomaly in Amazonian hydroclimate.
    Keywords: Center for Marine Environmental Sciences; MARUM
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...