GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Greenland's bed topography is a primary control on ice flow, grounding line migration, calving dynamics, and subglacial drainage. Moreover, fjord bathymetry regulates the penetration of warm Atlantic water (AW) that rapidly melts and undercuts Greenland's marine-terminating glaciers. Here we present a new compilation of Greenland bed topography that assimilates seafloor bathymetry and ice thickness data through a mass conservation approach. A new 150 m horizontal resolution bed topography/bathymetric map of Greenland is constructed with seamless transitions at the ice/ocean interface, yielding major improvements over previous data sets, particularly in the marine-terminating sectors of northwest and southeast Greenland. Our map reveals that the total sea level potential of the Greenland ice sheet is 7.42 ± 0.05 m, which is 7 cm greater than previous estimates. Furthermore, it explains recent calving front response of numerous outlet glaciers and reveals new pathways by which AW can access glaciers with marine-based basins, thereby highlighting sectors of Greenland that are most vulnerable to future oceanic forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Highlights • Glacial sediment-landform assemblages are documented from Disko Bay, West Greenland. • Jakobshavn Isbræ extended through the bay onto the continental shelf during the LGM. • Retreat was topographically controlled and changed from rapid to slow. • The depositional sedimentary environment was similar to East Greenland. • Glacimarine sedimentary processes depend on local controls rather than climate. Fast-flowing outlet glaciers currently drain the Greenland Ice Sheet (GIS), delivering ice, meltwater and debris to the fjords around Greenland. Although such glaciers strongly affect the ice sheet's mass balance, their glacimarine processes and associated products are still poorly understood. This study provides a detailed analysis of lithological and geophysical data from Disko Bay and the Vaigat Strait in central West Greenland. Disko Bay is strongly influenced by Jakobshavn Isbræ, Greenland's fastest-flowing glacier, which currently drains ∼7% of the ice sheet. Streamlined glacial landforms record the former flow of an expanded Jakobshavn Isbræ and adjacent GIS outlets through Disko Bay and the Vaigat Strait towards the continental shelf. Thirteen vibrocores contain a complex set of lithofacies including diamict, stratified mud, interbedded mud and sand, and bioturbated mud deposited by (1) suspension settling from meltwater plumes and the water column, (2) sediment gravity flows, and (3) iceberg rafting and ploughing. The importance of meltwater-related processes to glacimarine sedimentation in West Greenland fjords and bays is emphasised by the abundance of mud preserved in the cores. Radiocarbon dates constrain the position of the ice margin during deglaciation, and suggest that Jakobshavn Isbræ had retreated into central Disko Bay before 10.6 cal ka BP and to beyond Isfjeldsbanken by 7.6–7.1 cal ka BP. Sediment accumulation rates were up to 1.7 cm a−1 for ice-proximal glacimarine mud, and ∼0.007–0.05 cm a−1 for overlying distal sediments. In addition to elucidating the deglacial retreat history of Jakobshavn Isbræ, our findings show that the glacimarine sedimentary processes in West Greenland are similar to those in East Greenland, and that variability in such processes is more a function of time and glacier proximity than of geographic location and associated climatic regime.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-28
    Description: Non erosive margins are characterized by heavily sedimented trenches which obscure the morphological expression of the outer rise; a forebulge formed by the bending of the subducting oceanic lithosphere seaward of the trench. Depending on the flexural rigidity (D) of the oceanic lithosphere and the thickness of the trench sedimentary fill, sediment loading can affect the lithospheric downward deflection in the vicinity of the trench and hence the amount of sediment subducted. We used seismic and bathymetric data acquired off south central Chile, from which representative flexural rigidities are estimated and the downward deflection of the oceanic Nazca plate is studied. By flexural modeling we found that efficient sediment subduction preferentially occurs in weak oceanic lithosphere (low D), whereas wide accretionary prisms are usually formed in rigid oceanic lithosphere (high D). In addition, well developed forebulges in strong oceanic plates behaves as barrier to seaward transportation of turbidites, whereas the absence of a forebulge in weak oceanic plates facilitates seaward turbidite transportation for distances 〉200 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-23
    Description: 2-D seismic data from the top and the western slope of Mergui Ridge in water depths between 300 and 2200 m off the Thai west coast have been investigated in order to identify mass transport deposits (MTDs) and evaluate the tsunamigenic potential of submarine landslides in this outer shelf area. Based on our newly collected data, 17 mass transport deposits have been identified. Minimum volumes of individual MTDs range between 0.3 km3 and 14 km3. Landslide deposits have been identified in three different settings: (i) stacked MTDs within disturbed and faulted basin sediments at the transition of the East Andaman Basin to the Mergui Ridge; (ii) MTDs within a pile of drift sediments at the basin-ridge transition; and (iii) MTDs near the edge of/on top of Mergui Ridge in relatively shallow water depths (〈 1000 m). Our data indicate that the Mergui Ridge slope area seems to have been generally unstable with repeated occurrence of slide events. We find that the most likely causes for slope instabilities may be the presence of unstable drift sediments, excess pore pressure, and active tectonics. Most MTDs are located in large water depths (〉 1000 m) and/or comprise small volumes suggesting a small tsunami potential. Moreover, the recurrence rates of failure events seem to be low. Some MTDs with tsunami potential, however, have been identified on top of Mergui Ridge. Mass-wasting events that may occur in the future at similar locations may trigger tsunamis if they comprise sufficient volumes. Landslide tsunamis, emerging from slope failures in the working area and affecting western Thailand coastal areas therefore cannot be excluded, though the probability is very small compared to the probability of earthquake-triggered tsunamis, arising from the Sunda Trench.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Continuous surface cores of cold-seep carbonates were recovered offshore Pacific Nicaragua and Costa Rica from 800 to 1,500-m water depths (Meteor 66/3) in order to decipher their evolution and methane enriched fluid emanation in contrasting geological settings. Cores from the mounds Iguana, Perezoso, Baula V and from the Jaco Scarp escarpment were used for a multi-method approach. For both settings aragonite was revealed as dominant authigenic carbonate phase in vein fillings and matrix cementation, followed by Mg-calcite as second most abundant. This common precipitation process of CaCO3 polymorphs could be ascribed as indirectly driven by chemical changes of the advecting pore water due to anaerobic oxidation of methane. A more direct influence of seep-related microbial activity on the authigenic mineral assemblage in both settings is probably reflected by the observed minor amounts of dolomite and a dolomite-like CaMg carbonate (MgCO3 ~ 42 %). δ13C data of Jaco Scarp samples are significantly lower (−43 to −56 ‰ PDB) than for mound samples (−22 to −36 ‰ PDB), indicating differences in fluid composition and origin. Noteworthy, δ18O values of Scarp samples correlate most closely with the ocean signature at their time of formation. Documenting the archive potential, a high resolution case study of a mound core implies at least 40 changes in fluid supply within a time interval of approximately 14 ky. As most striking difference, the age data indicate a late-stage downward-progressing cementation front for all three mound cap structures (approx. 2–5 cm/ky), but a significantly faster upward carbonate buildup in the bulging sediments on top of the scarp environment (approx. 120 cm/ky). The latter data set leads to the hypothesis of chemoherm carbonate emplacement in accord with reported sedimentation rates until decompression of the advective fluid system, probably caused by the Jaco Scarp landslide and dating this to approximately 13,000 years ago.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Determining factors that limit coseismic rupture is important to evaluate the hazard of powerful subduction zone earthquakes such as the 2011 Tohoku-Oki event (Mw = 9.0). In 1960 (Mw = 9.5) and 2010 (Mw = 8.8), Chile was hit by such powerful earthquakes, the boundary of which was the site of a giant submarine slope failure with chaotic debris subducted to seismogenic zone depth. Here, a continuous décollement is absent, whereas away from the slope failure, a continuous décollement is seismically imaged. We infer that underthrusting of inhomogeneous slide deposits prevents the development of a décollement, and thus the formation of a thin continuous slip zone necessary for earthquake rupture propagation. Thus, coseismic rupture during the 1960 and 2010 earthquakes seems to be limited by underthrusted upper plate mass-wasting deposits. More generally, our results suggest that upper plate dynamics and resulting surface processes can play a key role for determining rupture size of subduction zone earthquakes
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-02-23
    Description: G33A-0852 The convergent continental margin off Central Chile displays one of the steepest forearc reliefs on earth: the distance from coast to the deformation front, i.e. from 0 to more than 5,000 m water depths just spans less than 100 km. The steep slope is characterized by voluminous submarine landslides, large slumps and deeply incised canyons. On February 27, 2010 this area was shaken heavily by one of the largest earthquakes ever recorded. How did this mega-event affect the seafloor morphology? Did it re-shape the submarine landscape? Did it create new slumps and slides on the continental slope? Were pre-existing fault and slide scarps modified? The pre-event geomorphology is well displayed in a detailed bathymetric map based on a compilation of data from more than 10 cruises with German RV Sonne and Meteor, Chilean RV Vidal Gormaz and British RRS James Cook to the area since 1995. In the framework of the "Rapid Response" project SIOSEARCH (Scripps Institution of Oceanography's Survey of the Earthquake and Rupture Offshore Chile) the same area was surveyed immediately after the earthquake by US RV Melville. Very detailed bathymetric maps were compiled from data of the new Kongsberg EM122 multibeam system onboard RV Melville. Both datasets allow for an unprecedented "before" and "after" comparison of the morphology of the part of the continental slope that was hit by the earthquake. Both datasets were carefully processed applying the same algorithms to achieve comparable high-resolution maps. The high data density allowed to create digital terrain models on a grid with cell sizes as small as 50 m down to a water depth of 5000 m. Additional information from the backscatter and acoustic imagery recordings was also taken into account. So far, a thorough inspection and comparison of pre- and post-event morphology revealed surprisingly small changes, however processing and interpretation of the data is still going on.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: ESF Research Conference on Understanding Extreme Geohazards, 27.11.-02.12.2011, Sant Feliu de Guixols, Spain .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-25
    Description: Kongsberg (EM120, EM1002) and ELAC (SB3050) multibeam systems of low to medium frequencies and various subbottom profilers were used to analyze the seafloor of the Baltic Sea between twenty and one hundred meter water depth. The working areas are characterized by soft mud allowing for significant penetration by both subbottom and multibeam signals, especially if lower frequencies were used. Locally shallow gas was found transforming the low-reflectivity mud acoustically into a strong volume scatterer. Single beam subbottom profiles across these shallow gas areas show distinct blanking effects below one and four meters below the seafloor. We demonstrate that low frequency multibeam systems are ideally suited to map those shallow gas areas over the entire swath of 140°. First the depth of the working areas was successfully determined with the shallow to mid-water 95kHz multibeam system. No backscatter anomaly was found while crossing the transition zone between mud and gas-bearing mud. In contrast a 12kHz survey over the same location reveals several meters deeper soundings. The resulting bathymetric data mimics the subbottom morphology of a till structure rather than the seafloor. The reason is strong penetration into the mud up to ten meters, even though the system was manually optimized for correct bottom detection. This makes the 12kHz system prone to subsurface mapping of strong reflectors within very soft sediments. High scattering gas bubbles embedded in the mud could be mapped by backscatter anomalies and misinterpretation of the shallow gas front as bottom echoes occurred. Angular range backscattering strength analysis suggests distinct differences between gassy and non-gassy areas and demonstrates the sensitivity of the low frequency multibeam sounder on free gas even on the very outer beams of the swath. The data is groundtruthed by subbottom profiling and geochemical sampling both indicating free gas. Even small gas pockets of only a few meters extension can be resolved demonstrating the advantages of high resolution and large coverage multibeam mapping compared to single beam surveys. Similar results were gathered using a mobile 50kHz system. (a) Backscatter amplitude chart of EM120. The red rectangle focuses on a transition zone between blue color/no-shallow-gas and red color/shallow-gas area; the inlet shows amplitude data from the 95kHz system not showing any transition. (b) PARASOUND subbottom data. The transition zone (red arrow) between shallow gas and no shallow gas plots exactly at the same location as seen in the multibeam data (a).
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-20
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...