GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-27
    Description: A new climate model has been developed that employs a multi-resolution dynamical core for the sea ice-ocean component. In principle, the multi-resolution approach allows one to use enhanced horizontal resolution in dynamically active regions while keeping a coarse-resolution setup otherwise. The coupled model consists of the atmospheric model ECHAM6 and the finite element sea ice-ocean model (FESOM). In this study only moderate refinement of the unstructured ocean grid is applied and the resolution varies from about 25 km in the northern North Atlantic and in the tropics to about 150 km in parts of the open ocean; the results serve as a benchmark upon which future versions that exploit the potential of variable resolution can be built. Details of the formulation of the model are given and its performance in simulating observed aspects of the mean climate is described. Overall, it is found that ECHAM6–FESOM realistically simulates many aspects of the observed climate. More specifically it is found that ECHAM6–FESOM performs at least as well as some of the most sophisticated climate models participating in the fifth phase of the Coupled Model Intercomparison Project. ECHAM6–FESOM shares substantial shortcomings with other climate models when it comes to simulating the North Atlantic circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-16
    Description: In this article, the tsunami model TsunAWI (Alfred Wegener Institute) and its application for hindcasts, inundation studies, and the operation of the tsunami scenario repository for the Indonesian tsunami early warning system are presented. TsunAWI was developed in the framework of the German-Indonesian Tsunami Early Warning System (GITEWS) and simulates all stages of a tsunami from the origin and the propagation in the ocean to the arrival at the coast and the inundation on land. It solves the non-linear shallow water equations on an unstructured finite element grid that allows to change the resolution seamlessly between a coarse grid in the deep ocean and a fine representation of coastal structures. During the GITEWS project and the following maintenance phase, TsunAWI and a framework of pre- and postprocessing routines was developed step by step to provide fast computation of enhanced model physics and to deliver high quality results.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-05-10
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    INTECH
    In:  EPIC3Wave Propagation Theories and Applications, Tsunami Wave Propagation, Croatia, INTECH, 380 p., pp. 43-72, ISBN: 978-953-51-0979-2
    Publication Date: 2014-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-15
    Description: This contribution focuses on two applications of the FESOM model family. On the one hand, recent runs with the finite volume code FESOM2 on large global meshes with regional focus are presented. FESOM's shallow water branch TsunAWI is the subject of the second part. TsunAWI, still based on finite elements, is used as an operational model in the Indonesia Tsunami Early Warning System (InaTEWS). InaTEWS derives tsunami forecasts in two different ways: from scenarios in a pre-computed database or from an on-the-fly simulation. The pre-computed scenarios are based on TsunAWI simulations with inundation on a triangular mesh with a resolution ranging from 20km in the deep ocean to 300m - 50m in coastal areas. The on-the-fly propagation model EasyWave (Andrey Babeyko, GFZ) solves the linear shallow water equations on a regular finite-difference grid with a resolution of about 1 km and the coast line as a vertical wall. EasyWave is used after a tsunami has been generated in an area not covered by the database or after seismic measurements show an earthquake mechanism not present in the database. As the numerical settings of both models are quite different, variations in the outputs are to be expected; nevertheless, the differences in the warning levels should not be too large for identical sources. In the current study, we systematically compare the warning products like estimated wave height and estimated time of arrival by the two approaches.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-17
    Description: Abstract: The Indonesia Tsunami Early Warning System delivers simulated tsunami forecasts in two different ways: either matching scenario(s) from a pre-computed database or running on-the-fly tsunami simulation. Recently, the database has been extended considerably taking into account additional source regions not covered in earlier stages of the system. In this contribution, we present the current status of the data base coverage as well as a study investigating the warning products obtained by the two modeling approaches. The pre-computed tsunami scenarios are based on the finite element model TsunAWI that employs a triangular mesh with resolution ranging from 20km in deep ocean to 300m in coastal areas and to as much as 50m in some highly resolved areas. TsunAWI solves the nonlinear shallow water equations and contains a wetting-drying inundation scheme. The on-the-fly propagation model easyWave solves the linear shallow water equations on a regular finite-difference grid with a resolution of about 1 km and utilizes several simple options to estimate coastal impact. This model is used for forecasting after a tsunami has been generated in an area not covered by the database or after a moment tensor solution shows an earthquake focal mechanism not present in the database. Since warning products like estimated wave height (EWH) and estimated time of arrival (ETA) along the coast are based on modeling results, it is crucial to compare the resulting forecasted warning levels obtained by the two approaches. Resolutions and numerical settings of both models are quite different, therefore variations in the resulting outputs are to be expected; nevertheless, the extent of differences in warning levels should not be too large for identical sources. In the present study, we systematically investigate differences in resulting warning products along InaTEWS forecast points facing the Sunda arc.  Whereas the finite-element mesh of TsunAWI covers the coast up to a terrain height of 50m and warning products have been pre-calculated directly in the forecast points, easyWave offers several options for their approximation including projections from offshore grid points or vertical wall. Differences and potential reasons for variations of warning products like the role of bathymetry resolution as well as the general approach for the assessment of EWH and ETA for different modeling frameworks are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-16
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-07-29
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  EPIC363. Bremerhavener MNU-Tagung, Bremerhaven, 2016-11-14-2016-11-15
    Publication Date: 2016-12-20
    Description: Nach dem verheerenden Tsunami im Indischen Ozean 2004 wurde das internationale Kooperationsprojekt ''German-Indonesian Tsunami Early Warning System'' ins Leben gerufen und das Frühwarnzentrum am Amt für Meteorologie, Klimatologie und Geophysik in Jakarta aufgebaut. Auf deutscher Seite wurde das Projekt vom Helholtz-Zentrum Potsdam, Deutsches Geoforschungszentrum geleitet. Die Warnung nach einem starken Erdbeben basiert auf einer Datenbank möglicher Tsunamiszenarien, so dass schnell die Gefährdung der Küsten abgeschätzt werden kann. Im Vorfeld dienen detailiierte Überflutungsrechnungen als Basis für Evakuierungspläne. Der Vortrag stellt den Aufbau des Warnsystems mit einem Schwerpunkt auf der Rolle der Tsunami-Simulation vor. Insbesondere werden die physikalischen und numerischen Grundlagen des Simulationsmodells TsunAWI beleuchtet und am Beispiel einiger Modellrechnungen Möglichkeiten und Grenzen der Simulation aufgezeigt.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-24
    Description: A sensitivity study is undertaken to assess the utility of different onshore digital elevation models (DEMs) for simulating the extent of tsunami inundation using case studies from two locations in Indonesia. We compare airborne IFSAR, ASTER, and SRTM against high resolution LiDAR and stereo-camera data in locations with different coastal morphologies. Tsunami inundation extents modeled with airborne IFSAR DEMs are comparable with those modeled with the higher resolution datasets and are also consistent with historical run-up data, where available. Large vertical errors and poor resolution of the coastline in the ASTER and SRTM elevation datasets cause the modeled inundation extent to be much less compared with the other datasets and observations. Therefore, ASTER and SRTM should not be used to underpin tsunami inundation models. A model mesh resolution of 25 m was sufficient for estimating the inundated area when using elevation data with high vertical accuracy in the case studies presented here. Differences in modeled inundation between digital terrain models (DTM) and digital surface models (DSM) for LiDAR and IFSAR are greater than differences between the two data types. Models using DTM may overestimate inundation while those using DSM may underestimate inundation when a constant Manning's roughness value is used. We recommend using DTM for modeling tsunami inundation extent with further work needed to resolve the scale at which surface roughness should be parameterized.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...