GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mu, Longjiang; Losch, Martin; Yang, Qinghua; Ricker, Robert; Losa, Svetlana N; Nerger, Lars (2018): Arctic-wide sea ice thickness estimates from combining satellite remote sensing data and a dynamicice-ocean model with data assimilation during the CryoSat-2 period. Journal of Geophysical Research: Oceans, 123(11), 7763-7780, https://doi.org/10.1029/2018JC014316
    Publication Date: 2023-01-13
    Description: An Arctic sea ice thickness record covering from 2010 to 2016 is generated by assimilating satellite thickness from CryoSat-2 and Soil Moisture and Ocean Salinity (SMOS). The model is based on the Massachusetts Institute of Technology general circulation model (MITgcm) and the assimilation is performed by a local Error Subspace Transform Kalman filter (LESTKF) coded in the Parallel Data Assimilation Framework (PDAF).
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 35 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Description: The simulated sea ice drift data is a by-product from a sea ice thickness assimilation system that generates the Arctic 'Combined Model and Satellite sea ice Thickness (CMST; doi:10.1594/PANGAEA.891475) ' dataset. The data also provide the ocean current velocity where ice free. To obtain the sea ice drift on the geographic coordinate, a transformation must be done as following: uE = AngleCS * SIuice - AngleSN * SIvice; vN = AngleSN * SIuice + AngleCS * SIvice; where uE and vN are two velocity components on the geographic coordinate; AngleCS and AngleSN can be found in 'grid.cdf'; SIuice and SIvice are sea ice velocity on model mesh.
    Keywords: Arctic; CMST; File content; File format; File name; File size; Fram Strait; sea ice drift; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 75 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: We developed a new version of the Alfred Wegener Institute Climate Model (AWI-CM3), which has higher skills in representing the observed climatology and better computational efficiency than its predecessors. Its ocean component FESOM2 (Finite-volumE Sea ice-Ocean Model) has the multi-resolution functionality typical of unstructured-mesh models while still featuring a scalability and efficiency similar to regular-grid models. The atmospheric component OpenIFS (CY43R3) enables the use of the latest developments in the numerical-weather-prediction community in climate sciences. In this paper we describe the coupling of the model components and evaluate the model performance on a variable-resolution (25-125 km) ocean mesh and a 61 km atmosphere grid, which serves as a reference and starting point for other ongoing research activities with AWI-CM3. This includes the exploration of high and variable resolution and the development of a full Earth system model as well as the creation of a new sea ice prediction system. At this early development stage and with the given coarse to medium resolutions, the model already features above-CMIP6-average skills (where CMIP6 denotes Coupled Model Intercomparison Project phase 6) in representing the climatology and competitive model throughput. Finally we identify remaining biases and suggest further improvements to be made to the model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-11-14
    Description: Exploiting the complementary character of CryoSat-2 and Soil Moisture and Ocean Salinity satellite sea ice thickness products, daily Arctic sea ice thickness estimates from October 2010 to December 2016 are generated by an Arctic regional ice-ocean model with satellite thickness assimilated. The assimilation is performed by a Local Error Subspace Transform Kalman filter coded in the Parallel Data Assimilation Framework. The new estimates can be generally thought of as combined model and satellite thickness (CMST). It combines the skill of satellite thickness assimilation in the freezing season with the model skill in the melting season, when neither CryoSat-2 nor Soil Moisture and Ocean Salinity sea ice thickness is available. Comparisons with in situ observations from the Beaufort Gyre Exploration Project, Ice Mass Balance Buoys, and the NASA Operation IceBridge demonstrate that CMST reproduces most of the observed temporal and spatial variations. Results also show that CMST compares favorably to the Pan-Arctic Ice-Ocean Modeling and Assimilation System product and even appears to correct known thickness biases in the Pan-Arctic Ice-Ocean Modeling and Assimilation System. Due to imperfect parameterizations in the sea ice model and satellite thickness retrievals, CMST does not reproduce the heavily deformed and ridged sea ice along the northern coast of the Canadian Arctic Archipelago and Greenland. With the new Arctic sea ice thickness estimates sea ice volume changes in recent years can be further assessed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  EPIC34th OceanPredict Data Assimilation Task Team Meeting, CERFACS, Toulouse, France, January 20-22, 2020
    Publication Date: 2020-02-26
    Description: The coupled atmosphere-ocean model AWI-CM has been augmented for ensemble data assimilation using the parallel data assimilation framework (PDAF). AWI-CM consists of the atmosphere model ECHAM6 and the unstructured grid finite element ocean model FESOM. PDAF provides the environment for ensemble forecasts and the ensemble filters for the assimilation. The work aims at strongly-coupled data assimilation, hence using cross-covariances between the atmosphere and ocean in the analysis step of the data assimilation process. As a first step oceanic observations are assimilated into the coupled model system in a setup of weakly coupled data assimilation and the effect one the coupled model state is assessed. We discuss the setup of the system, which is generic and hence also applicable for other coupled, but also uncoupled models. Further, challenges of the assimilation into the coupled system and initial results from strongly-coupled assimilation are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Seminar at School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, China, November 5, 2019
    Publication Date: 2020-02-29
    Description: Data assimilation combines observational information with numerical models taking into account the errors in both the observations and the model. In ensemble data assimilation the errors in the model state are dynamically estimated using an ensemble of model states. Data assimilation is used with coupled models to generate model fields to initialize model predictions, for computing a model state over time as a reanalysis, to optimize model parameters, and to assess model deficiencies. The coupled models simulate different compartments of the Earth system as well as their interactions. For example coupled atmosphere-ocean models like the AWI Climate Model (AWI-CM), simulate the physics in both compartments and fluxes in between then. Data assimilation is used with coupled models to generate model fields to initialize model predictions, for computing a model state over time as a reanalysis, to optimize model parameters, and to assess model deficiencies. Ensemble data assimilation methods can be applied with these model systems, but have a high high computing cost. To allow us to efficiently perform the data assimilation, the parallel data assimilation framework (PDAF) has been developed. I will discuss the application and challenges of coupled ensemble data assimilation on the examples of the data assimilative model system of AWI-CM coupled to PDAF and a coupled ocean-biogeochemical model consistent of the ocean circulation model MITgcm and the ecosystem model REcoM2.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-05
    Description: The Alfred Wegener Institute Climate Model (AWI‐CM) participates for the first time in the Coupled Model Intercomparison Project (CMIP), CMIP6. The sea ice‐ocean component, FESOM, runs on an unstructured mesh with horizontal resolutions ranging from 8 to 80 km. FESOM is coupled to the Max Planck Institute atmospheric model ECHAM 6.3 at a horizontal resolution of about 100 km. Using objective performance indices, it is shown that AWI‐CM performs better than the average of CMIP5 models. AWI‐CM shows an equilibrium climate sensitivity of 3.2°C, which is similar to the CMIP5 average, and a transient climate response of 2.1°C which is slightly higher than the CMIP5 average. The negative trend of Arctic sea‐ice extent in September over the past 30 years is 20–30% weaker in our simulations compared to observations. With the strongest emission scenario, the AMOC decreases by 25% until the end of the century which is less than the CMIP5 average of 40%. Patterns and even magnitude of simulated temperature and precipitation changes at the end of this century compared to present‐day climate under the strong emission scenario SSP585 are similar to the multi‐model CMIP5 mean. The simulations show a 11°C warming north of the Barents Sea and around 2°C to 3°C over most parts of the ocean as well as a wetting of the Arctic, subpolar, tropical, and Southern Ocean. Furthermore, in the northern middle latitudes in boreal summer and autumn as well as in the southern middle latitudes, a more zonal atmospheric flow is projected throughout the year.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Fifth Workshop on Coupling Technologies for Earth System Models, September 21 - 24, 2020, online
    Publication Date: 2020-10-27
    Description: We discuss how to build an ensemble data assimilation system using a direct connection between a coupled Earth system model (ESM) and the ensemble data assimilation software PDAF (Parallel Data Assimilation Framework, http://pdaf.awi.de). The direct connection results in a data assimilation program with high flexibility, efficiency, and parallel scalability. For this we augment the source code of the coupled model by data assimilation routines and hence create an online-coupled assimilative model. This first modifies the coupled model to be able to simulate an ensemble. Using a combination of in-memory access and parallel communication with the Message Passing Interface (MPI) standard we can further add the analysis step of ensemble-based assimilation methods. Thus the assimilation of observations is computed without the need to stop and restart the whole coupled model system. Instead, the analysis step is performed in between time steps and is independent of the actual model coupler that couples the different model compartments. This strategy to build the assimilation system allows us to perform both weakly coupled (in-compartment) and strongly coupled (cross-compartment) assimilation. The assimilation frequency can be kept flexible, so that the assimilation of observations from different compartments of the ESM can be performed at different intervals. Further, the reading and writing of disk files is minimized. The resulting assimilative model can be run in the same way as the regular ESM, but with additional parameters controlling the assimilation and with a higher number of processors to simulate the ensemble. Using the example of the coupled climate model AWI-CM that contains the FESOM model for the ocean and sea ice and ECHAM6 for the atmosphere, both coupled through the OASIS-MCT coupler, we discuss the features of the online assimilation coupling strategy and the performance of the resulting assimilative model.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AMER GEOPHYSICAL UNION
    In:  EPIC3Journal of Geophysical Research: Oceans, AMER GEOPHYSICAL UNION, 126(2), pp. e2020JC016607, ISSN: 2169-9275
    Publication Date: 2021-07-01
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-22
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...