GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
  • 1
    Book
    Book
    Bremen : Kamloth | Bremerhaven : Alfred-Wegener-Institut für Polar- und Meeresforschung
    Keywords: Hochschulschrift ; Meer ; Zirkulation ; Meeresströmung ; Profilmessung ; Satellitenaltimetrie ; Meeresoberfläche ; Meeresspiegel ; Satellitenaltimetrie ; Meeresströmung
    Type of Medium: Book
    Pages: VIII, 117 S.
    Series Statement: Berichte zur Polar- und Meeresforschung 379
    DDC: 551.47/02/015118
    RVK:
    Language: German
    Note: http://elib.suub.uni-bremen.de/dissertations/physic/Losch_M2000/ Losch_M2000.pdf , Zugl.: Bremen, Univ., Diss., 2000
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Paleoceanography, 32 (4). pp. 326-350.
    Publication Date: 2020-02-06
    Description: The global ocean state for the modern age and for the Last Glacial Maximum (LGM) was dynamically reconstructed with a sophisticated data assimilation technique. A substantial amount of data including global seawater temperature, salinity (only for the modern estimate), and the isotopic composition of oxygen and carbon (only in the Atlantic for the LGM) were integrated into an ocean general circulation model with the help of the adjoint method, thereby the model was optimized to reconstruct plausible continuous fields of tracers, overturning circulation and water mass distribution. The adjoint‐based LGM state estimation of this study represents the state of the art in terms of the length of forward model runs, the number of observations assimilated, and the model domain. Compared to the modern state, the reconstructed continuous sea‐surface temperature field for the LGM shows a global‐mean cooling of 2.2 K, and the reconstructed LGM ocean has a more vigorous Atlantic meridional overturning circulation, shallower North Atlantic Deep Water (NADW) equivalent, stronger stratification, and more saline deep water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Poster] In: 45. International Liege Colloquium on Ocean Dynamics: The variability of primary production in the ocean: from the synoptic to the global scale, 13.-17.05.2013, Liege, Belgium .
    Publication Date: 2016-05-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately resolved in these experiments, the timescales of carbon sequestration from the atmosphere are uncertain. Here we report the results of a five-week experiment carried out in the closed core of a vertically coherent, mesoscale eddy of the Antarctic Circumpolar Current, during which we tracked sinking particles from the surface to the deep-sea floor. A large diatom bloom peaked in the fourth week after fertilization. This was followed by mass mortality of several diatom species that formed rapidly sinking, mucilaginous aggregates of entangled cells and chains. Taken together, multiple lines of evidence—although each with important uncertainties—lead us to conclude that at least half the bloom biomass sank far below a depth of 1,000 metres and that a substantial portion is likely to have reached the sea floor. Thus, iron-fertilized diatom blooms may sequester carbon for timescales of centuries in ocean bottom water and for longer in the sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-02
    Description: Stratospheric ozone depletion and emission of greenhouse gases lead to a trend of the southern annular mode (SAM) toward its high-index polarity. The positive phase of the SAM is characterized by stronger than usual westerly winds that induce changes in the physical carbon transport. Changes in the natural carbon budget of the upper 100 m of the Southern Ocean in response to a positive SAM phase are explored with a coupled ecosystem-general circulation model and regression analysis. Previously overlooked processes that are important for the upper ocean carbon budget during a positive SAM period are identified, namely, export production and downward transport of carbon north of the polar front (PF) as large as the upwelling in the south. The limiting micronutrient iron is brought into the surface layer by upwelling and stimulates phytoplankton growth and export production but only in summer. This leads to a drawdown of carbon and less summertime outgassing (or more uptake) of natural CO2. In winter, biological mechanisms are inactive, and the surface ocean equilibrates with the atmosphere by releasing CO2. In the annual mean, the upper ocean region south of the PF loses more carbon by additional export production than by the release of CO2 into the atmosphere, highlighting the role of the biological carbon pump in response to a positive SAM event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Journal of Geophysical Research: Oceans, 122 (3). pp. 2090-2107.
    Publication Date: 2020-02-06
    Description: The impact of a subgrid-scale ice thickness distribution (ITD) and two standard ice strength formulations on simulated Arctic sea ice climate is investigated. To this end, different model configurations with and without an ITD were tuned by minimizing the weighted mean error between the simulated and observed sea ice concentration, thickness, and drift speed with an semiautomatic parameter optimization routine. The standard ITD and ice strength parameterization lead to larger errors when compared to the simple single-category model with an ice strength parameterization based on the mean ice thickness. Interestingly, the simpler ice strength formulation, which depends linearly on the mean ice thickness, also reduces the model-observation error when using an ITD. For the ice strength parameterization that makes use of the ITD, the effective ice strength depends strongly on the number of thickness categories, so that introducing more categories can lead to overall thicker ice that is more easily deformed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: 3. International Symposium on The Ocean in a high-CO2 World, 24.-27.09.2012, Monterey, USA .
    Publication Date: 2016-05-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Talk] In: Climate Change in High Latitudes, 10-Years Anniversary Conference, 03.-06.09.2012, Bergen, Norway .
    Publication Date: 2016-05-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 123 (10). pp. 7206-7219.
    Publication Date: 2021-02-08
    Description: We present a dynamically consistent gridded data set of the global, monthly mean oxygen isotope ratio of seawater ( urn:x-wiley:jgrc:media:jgrc23118:jgrc23118-math-0001). The data set was created from an optimized simulation of an ocean general circulation model constrained by global monthly urn:x-wiley:jgrc:media:jgrc23118:jgrc23118-math-0002 data collected from 1950 to 2011 and climatological salinity and temperature data collected from 1951 to 1980. The optimization was obtained using the adjoint method for variational data assimilation, which yields a simulation that is consistent with the observational data and the physical laws embedded in the model. Our data set performs equally well as a previous data set in terms of model‐data misfit but brings an improvement in terms of the seasonal cycle and physical consistency. As a result the data set does not show any sharp transitions between water masses or in areas where the data coverage is low. The data assimilation method shows high potential for interpolating sparse data sets in a physically meaningful way. Comparatively big errors, however, are found in our data set in the surface levels in the Arctic Ocean mainly because the influence of isotopically highly depleted precipitation is not preserved in the sea ice model, and the low model resolution of about 285 km horizontally. The data set is publicly available, and it is anticipated to be useful for a large range of applications in (paleo‐) oceanographic studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-09-22
    Description: Simulating sea ice drift and deformation in the Arctic Ocean is still a challenge because of the multiscale interaction of sea ice floes that compose the Arctic Sea ice cover. The Sea Ice Rheology Experiment (SIREx) is a model intercomparison project of the Forum of Arctic Modeling and Observational Synthesis (FAMOS). In SIREx, skill metrics are designed to evaluate different recently suggested approaches for modeling linear kinematic features (LKFs) to provide guidance for modeling small‐scale deformation. These LKFs are narrow bands of localized deformation that can be observed in satellite images and also form in high resolution sea ice simulations. In this contribution, spatial and temporal properties of LKFs are assessed in 36 simulations of state‐of‐the‐art sea ice models and compared to deformation features derived from the RADARSAT Geophysical Processor System. All simulations produce LKFs, but only very few models realistically simulate at least some statistics of LKF properties such as densities, lengths, or growth rates. All SIREx models overestimate the angle of fracture between conjugate pairs of LKFs and LKF lifetimes pointing to inaccurate model physics. The temporal and spatial resolution of a simulation and the spatial resolution of atmospheric boundary condition affect simulated LKFs as much as the model's sea ice rheology and numerics. Only in very high resolution simulations (≤2 km) the concentration and thickness anomalies along LKFs are large enough to affect air‐ice‐ocean interaction processes.
    Description: Plain Language Summary: Winds and ocean currents continuously move and deform the sea ice cover of the Arctic Ocean. The deformation eventually breaks an initially closed ice cover into many individual floes, piles up floes, and creates open water. The distribution of ice floes and open water between them is important for climate research, because ice reflects more light and energy back to the atmosphere than open water, so that less ice and more open water leads to warmer oceans. Current climate models cannot simulate sea ice as individual floes. Instead, a variety of methods is used to represent the movement and deformation of the sea ice cover. The Sea Ice Rheology Experiment (SIREx) compares these different methods and assesses the deformation of sea ice in 36 numerical simulations. We identify and track deformation features in the ice cover, which are distinct narrow areas where the ice is breaking or piling up. Comparing specific spatial and temporal properties of these features, for example, the different amounts of fractured ice in specific regions, or the duration of individual deformation events, to satellite observations provides information about the realism of the simulations. From this comparison, we can learn how to improve sea ice models for more realistic simulations of sea ice deformation.
    Description: Key Points: All models simulate linear kinematic features (LKFs), but none accurately reproduces all LKF statistics. Resolved LKFs are affected strongest by spatial and temporal resolution of model grid and atmospheric forcing and rheology. Accurate scaling of deformation rates is a proxy only for realistic LKF numbers but not for any other LKF static.
    Description: DOE
    Description: HYCOM NOPP
    Description: Innovation Fund Denmark and the Horizon 2020 Framework Programme of the European Union
    Description: National centre for Climate Research, SALIENSEAS, ERA4CS
    Description: German Helmholtz Climate Initiative REKLIM (Regional Climate Change)
    Description: Gouvernement du Canada, Natural Sciences and Engineering Research Council of Canada (NSERC) http://dx.doi.org/10.13039/501100000038
    Description: Environment and Climate Change Canada Grants & Contributions program
    Description: Office of Naval Research Arctic and Global Prediction program
    Description: U.S. Department of Energy Regional and Global Model Analysis program
    Description: National Science Foundation Arctic System Science program
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: https://zenodo.org/communities/sirex
    Keywords: ddc:550.285
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...