GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Deep-sea mineral exploration and exploitation licenses have been issued recently. • Mining will modify the abiotic and biotic environment. • At directly mined sites, species are removed and cannot resist disturbance. • Recovery is highly variable in distinct ecosystems and among benthic taxa. • Community changes may persist over geological time-scales at directly mined sites. Abstract With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species’ potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Natural gas hydrates are considered a potential resource for gas production on industrial scales. Gas hydrates contribute to the strength and stiffness of the hydrate-bearing sediments. During gas production, the geomechanical stability of the sediment is compromised. Due to the potential geotechnical risks and process management issues, the mechanical behavior of the gas hydrate-bearing sediments needs to be carefully considered. In this study, we describe a coupling concept that simplifies the mathematical description of the complex interactions occurring during gas production by isolating the effects of sediment deformation and hydrate phase changes. Central to this coupling concept is the assumption that the soil grains form the load-bearing solid skeleton, while the gas hydrate enhances the mechanical properties of this skeleton. We focus on testing this coupling concept in capturing the overall impact of geomechanics on gas production behavior though numerical simulation of a high-pressure isotropic compression experiment combined with methane hydrate formation and dissociation. We consider a linear-elastic stress-strain relationship because it is uniquely defined and easy to calibrate. Since, in reality, the geomechanical response of the hydrate-bearing sediment is typically inelastic and is characterized by a significant shear-volumetric coupling, we control the experiment very carefully in order to keep the sample deformations small and well within the assumptions of poroelasticity. The closely coordinated experimental and numerical procedures enable us to validate the proposed simplified geomechanics-to-flow coupling, and set an important precursor toward enhancing our coupled hydro-geomechanical hydrate reservoir simulator with more suitable elastoplastic constitutive models.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-26
    Description: Due to the strong interest in geochemical CO2-fluid-rock interaction in the context of geological storage of CO2 a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Highlights • A stack of four BSRs were identified in levee deposits of the Danube deep-sea fan. • The multiple BSRs are not caused by overpressure compartments. • The multiple BSRs reflect stages of stable sealevel lowstands during glacial times. • Gas underneath the previous GHSZ does not start to migrate for thousands of years. Abstract High-resolution 2D seismic data reveal the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. The theoretical base of the gas hydrate stability zone (GHSZ) calculated from regional geothermal gradients and salinity data is in agreement with the shallowest BSR. For the deeper BSRs, BSR formation due to overpressure compartments can be excluded because the necessary gas column would exceed the vertical distance between two overlying BSRs. We show instead that the deeper BSRs are likely paleo BSRs caused by a change in pressure and temperature conditions during different limnic phases of the Black Sea. This is supported by the observation that the BSRs correspond to paleo seafloor horizons located in a layer between a buried channel-levee system and the levee deposits of the Danube channel. The good match of the observed BSRs and the BSRs predicted from deposition of these sediment layers indicates that the multiple BSRs reflect stages of stable sealevel lowstands possibly during glacial times. The observation of sharp BSRs several 10,000 of years but possibly up to 300,000 yr after they have left the GHSZ demonstrates that either hydrate dissociation does not take place within this time frame or that only small amounts of gas are released that can be transported by diffusion. The gas underneath the previous GHSZ does not start to migrate for several thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The formation of mud volcanoes in the Gulf of Cadiz is closely linked to diapirism in the deep subsurface. The Mercator mud volcano (MMV) is a rare example where diapiric emplacement, in addition to being key for upward fluid migration, is also an important zone for fluid and mineral diagenesis. The most intriguing findings in the near-surface muds of the MMV are extremely high salinities of up to 5.2 M of NaCl from diapiric and evaporitic halite dissolution and the occurrence of authigenic gypsum and anhydrite crystals, both of which have not been observed to date in the Gulf of Cadiz. Employing a thermodynamic model we elucidate how the interplay of temperature pulses, strong salinity gradients, and fluid flow dynamically drive mineral dissolution and re-formation. The strong increase in salinity in the pore fluids has important implications for thermodynamic equilibria by significantly lowering the activity of water, thereby raising the gypsum–anhydrite transition zone from 〉1 km to about 400 m sediment depth at the MMV. This transition is further shifted to immediately below the seafloor during intervals of active mud and fluid expulsion when the MV surface temperature is heated up to at least 30 °C. As a consequence, precipitation of authigenic gypsum near the sediment surface (1–2 mbsf) has been linked to the dissolution of evaporites below the MMV. More precisely, the mechanisms generating supersaturation in the ascending gypsum-saturated MMV fluids are (1) the slow and constant cooling of these fluids along the geothermal gradient during their ascent leading to formation of ubiquitous micro-crystals and (2) the more rapid cooling after a heat pulse or transport from greater and warmer depth during an active mud volcano phase leading to the precipitation of cm-scale gypsum crystals or even fist-size concretions. The MMV fluids approaching the salt diapir from farther below have experienced a genesis similar to those of other mud volcanoes in the Gulf of Cadiz located above deep-rooted faults. These processes include clay mineral dewatering, thermogenic degradation of organic matter and deep high-temperature leaching of terrigenous sediments or continental crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-28
    Description: Geochemical data (CH4, SO42−, I−, Cl−, particulate organic carbon (POC), δ13C-CH4, and δ13C-CO2) are presented from the upper 30 m of marine sediment on a tectonic submarine accretionary wedge offshore southwest Taiwan. The sampling stations covered three ridges (Tai-Nan, Yung-An, and Good Weather), each characterized by bottom simulating reflectors, acoustic turbidity, and different types of faulting and anticlines. Sulfate and iodide concentrations varied little from seawater-like values in the upper 1–3 m of sediment at all stations; a feature that is consistent with irrigation of seawater by gas bubbles rising through the soft surface sediments. Below this depth, sulfate was rapidly consumed within 5–10 m by anaerobic oxidation of methane (AOM) at the sulfate-methane transition. Carbon isotopic data imply a mainly biogenic methane source. A numerical transport-reaction model was used to identify the supply pathways of methane and estimate depth-integrated turnover rates at the three ridges. Methane gas ascending from deep layers, facilitated by thrusts and faults, was by far the dominant term in the methane budget at all sites. Differences in the proximity of the sampling sites to the faults and anticlines mainly accounted for the variability in gas fluxes and depth-integrated AOM rates. By comparison, methane produced in situ by POC degradation within the modeled sediment column was unimportant. This study demonstrates that the geochemical trends in the continental margins offshore SW Taiwan are closely related to the different geological settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-11
    Description: Highlights • High abundance of active anaerobic methanotrophs in sediments of the blowout crater suggests adaptation to methane seepage within at most two decades. • Fast exchange processes in permeable surface sediments prevent sulfate depletion and probably methane-derived carbonate precipitation. • Methane seepage impacts isotopic and assemblage composition of benthic foraminifera. Abstract Methane emissions from marine sediments are partly controlled by microbial anaerobic oxidation of methane (AOM). AOM provides a long-term sink for carbon through precipitation of methane-derived authigenic carbonates (MDAC). Estimates on the adaptation time of this benthic methane filter as well as on the establishment of related processes and communities after an onset of methane seepage are rare. In the North Sea, considerable amounts of methane have been released since 20 years from a man-made gas blowout offering an ideal natural laboratory to study the effects of methane seepage on initially “pristine” sediment. Sediment cores were taken from the blowout crater and a reference site (50 m distance) in 2011 and 2012, respectively, to investigate porewater chemistry, the AOM community and activity, the presence of authigenic carbonates, and benthic foraminiferal assemblages. Potential AOM activity (up to 3060 nmol cm−3 sediment d−1 or 375 mmol m−2 d−1) was detected only in the blowout crater up to the maximum sampling depth of 18 cm. CARD-FISH analyzes suggest that monospecific ANME-2 aggregates were the only type of AOM organisms present, showing densities (up to 2.2*107 aggregates cm−3) similar to established methane seeps. No evidence for recent MDAC formation was found using stable isotope analyzes (δ13C and δ18O). In contrast, the carbon isotopic signature of methane was recorded by the epibenthic foraminifer Cibicides lobatulus (δ13C −0.66‰). Surprisingly, the foraminiferal assemblage in the blowout crater was dominated by Cibicides and other species commonly found in the Norwegian Channel and fjords, indicating that these organisms have responded sensitively to the specific environmental conditions at the blowout. The high activity and abundance of AOM organisms only at the blowout site suggests adaptation to a strong increase in methane flux in the order of at most two decades. High gas discharge dynamics in permeable surface sediments facilitate fast sulfate replenishing and stimulation of AOM. The accompanied prevention of total alkalinity build-up in the porewater thereby appears to inhibit the formation of substantial methane-derived authigenic carbonate at least within the given time window.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Gashydrate sind eisähnliche Verbindungen, in denen Hydratbildner, z.B. Methan, in hoher Dichte gespeichert werden können. Methanhydrate sind nur bei hohen Drücken und tiefen Temperaturen sowie in Anwesenheit hoher Methankonzentrationen stabil. Diese Stabilitätsbedingungen sind unter bestimmten Voraussetzungen in marinen Sedimenten erfüllt, in denen Methan durch den mikrobiellen Abbau von abgelagerter Biomasse entsteht oder aus größeren Tiefen zugeführt wird. Die globale Menge an Methan in marinen Gashydraten überschreitet die Menge an Erdgas in konventionellen Lagerstätten vermutlich um ein Mehrfaches. Eine potenzielle Nutzung von Gashydraten als zukünftige Energiequelle wird daher gegenwärtig weltweit untersucht. Erste Feldtests in Permafrostregionen und marinen Lagerstätten haben gezeigt, dass eine Produktion von Methan aus Gashydraten prinzipiell möglich ist. Eine Förderung von Methan aus Gashydraten kann technisch realisiert werden mittels Druckabsenkung, durch thermische Stimulation oder chemische Aktivierung. Die Injektion von CO2, ebenfalls ein Hydratbildner, kann eine solche Aktivierung der natürlichen Hydrate bewirken und das Methan in der Hydratstruktur ersetzen. Infolgedessen erscheint eine verfahrenstechnische Kombination von Hydratabbau und CO2-Speicherung als besonders sinnvoll, da im Idealfall eine emissionsarme bis -freie Energiegewinnung ermöglicht würde. Untersuchungen zur Aufklärung mechanistischer und fluiddynamischer Aspekte der CH4-CO2-Hydratumwandlung sowie zur Entwicklung eines technischen Verfahrens werden in unterschiedlichen Hochdruckanlagen auf verschiedenen Skalen durchgeführt. Diese speziellen Systeme bieten die Möglichkeit, marine Druck-, Temperatur- und Durchflussbedingungen zu simulieren. Sie sind mit verschiedenen Sensoren und Messsystemen (z.B. CTD, IR, Raman, MRI) ausgerüstet, um den Prozessverlauf störungsfrei zu überwachen. Basierend auf derzeitigen Ergebnissen erscheint die Injektion von erwärmtem, überkritischem CO2 als vielversprechender technischer Baustein für die Verfahrensentwicklung. Die Zuführung von Wärmeenergie bewirkt die initiale Destabilisierung der Gashydrate und die Freisetzung von CH4, während nach Abkühlung das CO2 seinerseits Hydrate bildet und als feste, immobile Phase im Sediment zurückgehalten wird. Sowohl Methanproduktion als auch CO2-Speicherung sind dabei abhängig von der Reservoirtemperatur, so dass die Prozesseffizienz und -ausbeute bei mittleren Temperaturen (8°C) höher ist als bei niedrigeren (2°C) und höheren Temperaturen (10°C). Dies deutet darauf hin, dass der Gesamtprozess durch die Raten der jeweiligen Teilreaktionen der Hydratzersetzung und Hydratneubildung stark beeinflusst wird. Der experimentelle Vergleich unterschiedlicher Injektionsmodi zeigt, dass eine alternierende CO2-Injektion bestehend aus Injektions- und Reaktionsintervallen höhere Ausbeuten erreicht als eine kontinuierliche Injektion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-07
    Description: Hydrocarbon-rich fluids expelled at mud volcanoes (MVs) may contribute significantly to the carbon budget of the oceans, but little is known about the long-term variation in fluid fluxes at MVs. The Darwin MV is one of more than 40 MVs located in the Gulf of Cadiz, but it is unique in that its summit is covered by a thick carbonate crust that has the potential to provide a temporal record of seepage activity. In order to test this idea, we have conducted petrographic, chemical and isotopic analyses of the carbonate crust. In addition a 1-D transport-reaction model was applied to pore fluid data to assess fluid flow and carbonate precipitation at present. The carbonate crusts mainly comprise of aragonite, with a chaotic fabric exhibiting different generations of cementation and brecciation. The crusts consist of bioclasts and lithoclasts (peloids, intraclasts and extraclasts) immersed in a micrite matrix and in a variety of cement types (microsparite, botryoidal, isopachous acicular, radial and splayed fibrous). The carbonates are moderately depleted in 13C (δ13C = − 8.1 to − 27.9‰) as are the pore fluids (δ13C = − 19.1 to − 28.7‰), which suggests that their carbon originated from the oxidation of methane and higher hydrocarbons, like the gases that seep from the MV today. The carbonate δ18O values are as high as 5.1‰, and it is most likely that the crusts formed from 18O-rich fluids derived from dehydration of clay minerals at depth. Pore fluid modelling results indicate that the Darwin MV is currently in a nearly dormant phase (seepage velocities are 〈 0.09 cm yr− 1). Thus, the thick carbonate crust must have formed during past episodes of high fluid flow, alternating with phases of mud extrusion and uplift. Highlights ► Results of pore fluid modelling indicate low seepage activity at localised sites. ► Pore fluids are supersaturated with respect to hydrocarbons of thermogenic origin. ► AOM supports vent fauna and results in the formation of authigenic carbonates. ► The carbonate crust has a brecciated appearance and mainly consists of aragonite. ► The crust formation seems to be regulated by changes in fluid and mudflow activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Lithium concentration and isotope data (δ7Li) are reported for pore fluids from 18 cold seep locations together with reference fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow an empirical relationship between Li concentration and δ7Li (δ7Li = −6.0(±0.3) · ln[Li] + 51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display δ7Li values between +7.5‰ and +45.7‰, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in all cold seep fluids indicate that authigenic smectite–illite is the major sink for light pore water Li in deeply buried continental margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sediments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope fractionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a−1) suffices to convey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus, provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below the actual seafloor fluid escape structure.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...