GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2024-03-07
    Description: An understanding of how the coupled cycles of carbon, iron and sulfur in sediments respond to environmental change throughout Earth history requires the reconstruction of biogeochemical processes over a range of spatial and temporal scales. In this study, sediment cores from the southwestern Black Sea were analyzed to gain insight into past changes in biogeochemical processes with particular focus on the cycling of dissolved organic carbon (DOC). The sediment consists of Late Pleistocene deposits of iron oxide-rich and organic-poor lacustrine sediments, a Holocene sapropel layer deposited after the inflow of saline Mediterranean seawater about 9300 yr BP, and overlying recent marine sediments. The porewaters displayed high concentrations of DOC, acetate, dissolved iron and an extended depth interval over which sulfate and methane were both present. The historical fluctuations of the fluxes of carbon, sulfur and iron species at the seafloor that led to these present-day geochemical profiles, and which cannot be easily interpreted from the measured data alone, were hindcasted with a reaction-transport model. The model suggests that the inflow of Mediterranean seawater impacted the rain rate and reactivity of organic matter reaching the sediments, which shifted the sedimentary redox regimes throughout the Holocene that now are reflected on different lithology units. Organic matter in the sapropel layer is apparently the main source of modern-day accumulations of DOC and acetate, both of which probably sustained subsurface microbial activity throughout the post-glacial period. The ratio between DOC and dissolved inorganic carbon (DIC) flux to the bottom water decreased from ∼40 % before the inflow of Mediterranean water to ∼2 % at the present day. We suggest that the coexistence of methanogenesis and sulfate reduction was associated with sulfate-reducing bacteria and methanogens sharing common substrates of acetate and lactate and utilizing non-competitive substrates such as methylated compounds in the sapropel layer and in the bottom of modern marine deposits. Intense sulfur and iron cycling mainly took place in the organic-poor freshwater deposits, today characterized by high concentrations of dissolved iron and methane. In contrast to previous studies in similar environments, anaerobic oxidation of methane coupled to the reduction of ferric iron was negligible. The results have broad implications for coastal environments that are currently experiencing deoxygenation and seawater intrusion and also for understanding the role of DOC in the sedimentary carbon cycle.
    Keywords: benthic carbon cycle; Black Sea; Center for Marine Environmental Sciences; DARCLIFE; Deep subsurface Archaea: carbon cycle, life strategies, and role in sedimentary ecosystems; MARUM; pore water; sedimentary geochemistry
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-07
    Keywords: Acetate; Ammonium; benthic carbon cycle; Black Sea; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Center for Marine Environmental Sciences; Chloride; Corrected; DARCLIFE; Deep subsurface Archaea: carbon cycle, life strategies, and role in sedimentary ecosystems; DEPTH, sediment/rock; Gas chromatography - Flame Ionization Detection (GC-FID); GC; GeoB15105-1; Gravity corer; Hydrogen sulfide anion; Ion chromatography; Iron (oxyhydr)oxides, amorphous; Iron (oxyhydr)oxides, crystalline; Iron 2+; Iron carbonate; Iron hydroxides; Iron sulfides; Lactate; M84/1; M84/1_126-1; MARUM; Meteor (1986); Methane; Photometry; pore water; Porosity, total; sedimentary geochemistry; Sulfate; TOC, total organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 354 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-07
    Keywords: Ammonium; benthic carbon cycle; Black Sea; Carbon, inorganic, dissolved; Carbon, organic, total; Center for Marine Environmental Sciences; Chloride; DARCLIFE; Deep subsurface Archaea: carbon cycle, life strategies, and role in sedimentary ecosystems; DEPTH, sediment/rock; Element analyser isotope ratio mass spectrometer (EA-IRMS); Gas chromatography - Flame Ionization Detection (GC-FID); GeoB15105-4; Hydrogen sulfide anion; Ion chromatography; Iron 2+; M84/1; M84/1_129-1; MARUM; Meteor (1986); Methane; MUC; MultiCorer; Photometry; pore water; Porosity, total; sedimentary geochemistry; Sulfate; TOC, total organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 148 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-07
    Keywords: Ammonium; benthic carbon cycle; Black Sea; Carbon, inorganic, dissolved; Center for Marine Environmental Sciences; Chloride; Corrected; DARCLIFE; Deep subsurface Archaea: carbon cycle, life strategies, and role in sedimentary ecosystems; DEPTH, sediment/rock; GC; GeoB15105-2; Gravity corer; Hydrogen sulfide anion; Ion chromatography; Iron 2+; M84/1; M84/1_127-1; MARUM; Meteor (1986); Photometry; pore water; sedimentary geochemistry; Sulfate; TOC, total organic carbon
    Type: Dataset
    Format: text/tab-separated-values, 192 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmolm-2 d-1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO2- 4 m-2 d-1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-28
    Description: Geochemical data (CH4, SO42−, I−, Cl−, particulate organic carbon (POC), δ13C-CH4, and δ13C-CO2) are presented from the upper 30 m of marine sediment on a tectonic submarine accretionary wedge offshore southwest Taiwan. The sampling stations covered three ridges (Tai-Nan, Yung-An, and Good Weather), each characterized by bottom simulating reflectors, acoustic turbidity, and different types of faulting and anticlines. Sulfate and iodide concentrations varied little from seawater-like values in the upper 1–3 m of sediment at all stations; a feature that is consistent with irrigation of seawater by gas bubbles rising through the soft surface sediments. Below this depth, sulfate was rapidly consumed within 5–10 m by anaerobic oxidation of methane (AOM) at the sulfate-methane transition. Carbon isotopic data imply a mainly biogenic methane source. A numerical transport-reaction model was used to identify the supply pathways of methane and estimate depth-integrated turnover rates at the three ridges. Methane gas ascending from deep layers, facilitated by thrusts and faults, was by far the dominant term in the methane budget at all sites. Differences in the proximity of the sampling sites to the faults and anticlines mainly accounted for the variability in gas fluxes and depth-integrated AOM rates. By comparison, methane produced in situ by POC degradation within the modeled sediment column was unimportant. This study demonstrates that the geochemical trends in the continental margins offshore SW Taiwan are closely related to the different geological settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-06
    Description: With the discoveries of Bottom Simulating Reflectors (BSRs), large and dense chemosynthetic communities and rapid sulfate reductions in pore space sediments, gas hydrates may exist in offshore southwestern Taiwan. Methane concentrations in pore space sediments have been measured to investigate if fluids and gases are derived from dissociation of gas hydrates. Very high methane concentrations and very shallow depths of sulfate methane interface (SMI) imply the high methane flux underneath the seafloor. Linear sulfate gradients, low total organic carbon (TOC) have been combined to describe the process of anaerobic methane oxidation (AMO) and calculate the iffusive methane flux in Chuang et al. (2010). However, the appearance of concave (or non-linear) profiles of sulfate in some cores might indicate advective fluid flows. Hence, the methane flux may be much greater under advective conditions. In this study, numerical transport-reaction models were applied to calculate the methane flux including diffusion and advection of dissolved sulfate and methane and the anaerobic methane oxidation of methane. According to the modeled results of three giant piston cores (MD05-2911, MD05-2912 and MD05-2913) collected during the r/v Marion Dufresne cruise in 2005, gas bubbling or bioirrigation may occur in these site. Values of the methane flux ranging from 1.91 to 5.17 mmol m-2yr-1 and upward fluid flow velocities around 0.05-0.13 cm yr-1 are related to different geologic structures in the active continental margin. Site MD05-2912 is located on the Tainan Ridge where anticlines and blind thrusts are the dominate structures. Site MD052911 is on the Yung-An Ridge characterized by emergent and imbricate thrusts.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: The major processes that determine the distribution of methane (CH4) in anoxic marine sediments are methanogenesis and the anaerobic oxidation of methane (AOM), with organoclastic sulfate reduction exerting an important secondary control. However, the factors leading to the distribution of stable carbon isotopes (δ13C) of CH4 are currently poorly understood, in particular the commonly-observed minimum in δ13C-CH4 at the sulfate-methane transition (SMT) where AOM rates reach maximum values. Conventional isotope systematics predict 13C-enrichment of CH4 in the SMT due to preferential 12CH4 consumption by AOM. Two hypotheses put forward to explain this discrepancy are the addition of 12C-enriched CH4 to porewaters by methanogenesis in close proximity to AOM, and enzymatically-mediated carbon isotope equilibrium between forward and backward AOM at low concentrations of sulfate. To examine this in more detail, field data including δ13C of CH4 and dissolved inorganic carbon (DIC) from the continental margin offshore southwestern Taiwan were simulated with a reaction-transport model. Model simulations showed that the minima in δ13C-CH4 and δ13C-DIC in the SMT could only be simulated with carbon isotope equilibrium during AOM. The potential for carbon cycling between methanogenesis and AOM in and just below the SMT was insignificant due to very low rates of methanogenesis. Backward AOM also gives rise to a pronounced kink in the δ13C-DIC profile several meters below the SMT that has been observed in previous studies. We suggest that this kink marks the true base of the SMT where forward and backward AOM are operating at very low rates, possibly sustained by cryptic sulfur cycling or barite dissolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...