GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-01-12
    Description: The Formosa Ridge cold seep is among the first documented active seeps on the northern South China Sea passive margin slope. Although this system has been the focus of scientific studies for decades, the geological factors controlling gas release are not well understood due to a lack of constraints of the subsurface structure and seepage history. Here, we use high‐resolution 3D seismic data to image stratigraphic and structural relationships associated with fluid expulsion, which provide spatio‐temporal constraints on the gas hydrate system at depth and methane seepage at modern and paleo seafloors. Gas has accumulated beneath the base of gas hydrate stability to a critical thickness, causing hydraulic fracturing, propagation of a vertical gas conduit, and morphological features (mounds) at paleo‐seafloor horizons. These mounds record multiple distinct gas migration episodes between 300,000 and 127,000 years ago, separated by periods of dormancy. Episodic seepage still seems to occur at the present day, as evidenced by two separate fronts of ascending gas imaged within the conduit. We propose that episodic seepage is associated with enhanced seafloor sedimentation. The increasing overburden leads to an increase in effective horizontal stress that exceeds the gas pressure at the top of the gas reservoir. As a result, the conduit closes off until the gas reservoir is replenished to a new (greater) critical thickness to reopen hydraulic fractures. Our results provide intricate detail of long‐term methane flux through sub‐seabed seep systems, which is important for assessing its impact on seafloor and ocean biogeochemistry.
    Description: Plain Language Summary: Gas hydrates are ice‐like compounds that form in marine sediments. They can reduce the permeability of the sediments by clogging up the pore spaces, and influence how methane gas flows through sediments and then seeps out of the seafloor. Seepage of methane into the water column plays an important role in seafloor biology and ocean chemistry. In this study, we use 3D seismic imaging to investigate the subseafloor sediments of a ridge in the South China Sea where gas is currently seeping into the ocean. Our data show, in high detail, how gas migrates upward through the sediments due to the buoyancy of gas. Our data also reveal mound structures at certain depths beneath the seafloor. We interpret that these mounds represent distinct phases in the geological past where gas was seeping out of the seafloor. This indicates that gas seepage at this ridge has switched on and off (episodically) throughout geological time. We speculate that the episodic seepage is associated with rapid seafloor sedimentation, which changes pressure conditions beneath the seafloor. Our work improves the understanding of how gas seepage processes can change on geological timescales.
    Description: Key Points: Gas has accumulated beneath the base of gas hydrate stability, causing vertical gas conduit formation and seabed mounds. Mounds imaged within the conduit record episodic seepage between 300 and 127 kyrs ago. Quiescence may be associated with enhanced seafloor sedimentation that increases effective stress at the top of the gas reservoir.
    Description: MOST
    Description: ESAS
    Description: TEC
    Description: https://doi.pangaea.de/10.1594/PANGAEA.913192
    Keywords: ddc:553.1 ; gas hydrate ; gas conduit ; hydraulic fracturing ; episodic venting ; sedimentary processes ; offshore Taiwan
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-16
    Description: The 3D seismic cube is in SEG-Y format with SP in byte 5, inline number in byte 25 and xline number in byte 17. Processing includes repositioning, time migration and depth conversion using a smoothed velocity field based on Berndt et al., 2019. Acquisition parameters are discussed in the SO227 cruise report (Berndt et al., 2013).
    Keywords: Depth; File content; File format; File name; File size; Four-Way Closure Ridge; P-Cable 3D Seismic; P-Cable 3D seismic cube; Seismic reflection profile; SEISREFL; SO227; SO227_26-1_27-1_28-1; Sonne; Taiflux; Taiwan; Uniform resource locator/link to metadata file; Uniform resource locator/link to sgy data file
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-20
    Description: To examine the temperature impact on the DPG signals related to internal motions, four Cox-Webb differential pressure gauges (DPGs) fixed on the ocean bottom and a high-resolution temperature sensor (T-sensor) 13 m above the seafloor as a square-kilometer array deployed offshore eastern Taiwan facing the open Pacific Ocean. The DPGs and T-sensor were built by the Institute of Earth Sciences of Academia Sinica and Royal Netherlands Institute for Sea Research (NIOZ), respectively. In addition, a Nortek AquaDopp acoustic current meter with pressure sensor was attached on the same vertical string with the T-sensor at 2936 m. The multiple instruments in the array were located at depths between 3000 and 3200 m with inter-station horizontal distances ranging from about 300 m to 1 km. The time series data with 2 mHz sampling rate in ASCII format were used to study propagation of the deep-sea internal waves between September 2017 and April 2018. Fifteen events of the internal motions were selected by T-sensor-DPG correlation coefficient 〉 0.7 at every DPG in a 3-day time window that is shifted in time by 1 day. The propagating direction and apparent horizontal phase speed of the internal waves can be estimated by the DPG data using array analysis methods.
    Keywords: MULT; Multiple investigations; Taiwan; Taiwan_SEcoast
    Type: Dataset
    Format: application/zip, 644.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-20
    Description: This is a dataset that has been acquired in 1995 as part of the U.S.-ROC Deep Seismic Imaging Study of the Taiwan Arc-Continent Collision (TAICRUST) project. This particular line was measured in the Taiwan Strait in September 1995 to image the shallow sediments and upper crust. Additional information from the Cruise EW9509 is stored at the Marine Geoscience Data System (MGDS).
    Keywords: Binary Object; EW9509; EW9509_Line38; Maurice Ewing; multi-channel seismic reflection; raw data; SEIS; Seismic
    Type: Dataset
    Format: text/tab-separated-values, 19 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2009. This article is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 179 (2009): 1859-1869, doi:10.1111/j.1365-246X.2009.04391.x.
    Description: A broad-band ocean-bottom seismometer (OBS) deployed ~180 km east of Taiwan provides a first glimpse into the upper mantle beneath the westernmost section of the Philippine Sea or the Huatung basin (HB). We measured interstation phase velocities of Rayleigh waves between the OBS and stations on the eastern coast of Taiwan. The phase velocities show smooth variations from 3.8 to 3.9 km s−1 for periods of 25–40 s. In this short period range, phase velocities are comparable to those characterizing the 15–30 Ma Parece-Vela basin of the Philippine Sea. Modelling of the finite-frequency effect proves the validity of the measurement for the average HB. The shear-wave velocity models inverted from the 25 to 40 s dispersion show a velocity at lithospheric depths about 0.1 km s−1 lower than that of the west Philippine Sea, which agrees with the age effect derived from the Pacific pure-path model. Inversions incorporating the less reliable data above 40 s yield a shear velocity 〈4.0 km s−1 below 150 km, an unrealistic value even for a hotspot plume environment. The seismological evidence, together with the correlation in seafloor depth, suggests that the HB and the Parece-Vela basin may have a similar age. This is at odds with the previous geochronological study suggesting an early-Cretaceous age for the HB. Thermal rejuvenation of the lithosphere was examined as a potential solution to reconciling the two age models.
    Description: The research is supported by the National Science Council, Taiwan, Republic of China, under grant NSC 96–2745-M-001–005.
    Keywords: Surface waves and free oscillations ; Wave propagation ; Continental margins: convergent ; Dynamics of lithosphere and mantle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Highlights • Original 2D/3D seismic data present structural styles across the deformation front. • Dynamic process of the deformation front shifts as plate convergence moving westward. • Migration of submarine canyons is related to the incipient arc-continent collision. • Temporal changes in the stress regime leads to structural/sedimentary alterations. Abstract This study analyzes both 2D and 3D seismic images around the Palm Ridge area offshore of southwestern Taiwan to understand how the deformation front shifted westward and how tectonic activities interact with submarine canyon paths in the transition area between the active and passive margins. Palm Ridge is a submarine ridge that developed on the passive China continental margin by down-dip erosion of several tributaries of Penghu Canyon; it extends eastward across the deformation front into the submarine Taiwan accretionary wedge. The presence of proto-thrusts that are located west of the frontal thrust implies that the compressional stress field has advanced westward due to the convergence of the Philippine Sea Plate and Eurasian Plate. Since the deformation front is defined as the location of the most frontal contractional structure, no significant contractional structure should appear west of it. We thus suggest moving the location of the previously mapped deformation front farther west to where the westernmost proto-thrust lies. High-resolution seismic and bathymetric data reveal that the directions of the paleo-submarine canyons run transverse to the present slope dip, while the present submarine canyons head down slope in the study area. We propose that this might be the result of the westward migration of the deformation front that changed the paleo-bathymetry and thus the canyon path directions. The interactions of down-slope processes and active tectonics control the canyon paths in our study area.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Meteorological Society of the Republic of China
    In:  Terrestrial, Atmospheric and Oceanic Sciences, 29 (2). pp. 105-115.
    Publication Date: 2021-02-08
    Description: Direct measurements of gas composition by drilling at a few hundred meters below seafloor can be costly, and a remote sensing method may be preferable. The hydrate occurrence is seismically shown by a bottom-simulating reflection (BSR) which is generally indicative of the base of the hydrate stability zone. With a good temperature profile from the seafloor to the depth of the BSR, a near-correct hydrate phase diagram can be calculated, which can be directly related to the hydrate composition. However, in the areas with high topographic anomalies of seafloor, the temperature profile is usually poorly defined, with scattered data. Here we used a remote method to reduce such scattering. We derived gas composition of hydrate in stability zone and reduced the scattering by considering depth-dependent geothermal conductivity and topographic corrections. Using 3D seismic data at the Penghu canyon, offshore SW Taiwan, we corrected for topographic focusing through 3D numerical thermal modeling. A temperature profile was fitted with a depth-dependent geothermal gradient, considering the increasing thermal conductivity with depth. Using a pore-water salinity of 2%, we constructed a gas hydrate phase model composed of 99% methane and 1% ethane to derive a temperature depth profile consistent with the seafloor temperature from in-situ measurements, and geochemical analyses of the pore fluids. The high methane content suggests predominantly biogenic source. The derived regional geothermal gradient is 40°C km-1. This method can be applied to other comparable marine environment to better constrain the composition of gas hydrate from BSR in a seismic data, in absence of direct sampling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-06
    Description: Highlights • A stack of four BSRs were identified in levee deposits of the Danube deep-sea fan. • The multiple BSRs are not caused by overpressure compartments. • The multiple BSRs reflect stages of stable sealevel lowstands during glacial times. • Gas underneath the previous GHSZ does not start to migrate for thousands of years. Abstract High-resolution 2D seismic data reveal the character and distribution of up to four stacked bottom simulating reflectors (BSR) within the channel-levee systems of the Danube deep-sea fan. The theoretical base of the gas hydrate stability zone (GHSZ) calculated from regional geothermal gradients and salinity data is in agreement with the shallowest BSR. For the deeper BSRs, BSR formation due to overpressure compartments can be excluded because the necessary gas column would exceed the vertical distance between two overlying BSRs. We show instead that the deeper BSRs are likely paleo BSRs caused by a change in pressure and temperature conditions during different limnic phases of the Black Sea. This is supported by the observation that the BSRs correspond to paleo seafloor horizons located in a layer between a buried channel-levee system and the levee deposits of the Danube channel. The good match of the observed BSRs and the BSRs predicted from deposition of these sediment layers indicates that the multiple BSRs reflect stages of stable sealevel lowstands possibly during glacial times. The observation of sharp BSRs several 10,000 of years but possibly up to 300,000 yr after they have left the GHSZ demonstrates that either hydrate dissociation does not take place within this time frame or that only small amounts of gas are released that can be transported by diffusion. The gas underneath the previous GHSZ does not start to migrate for several thousands of years.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-02-01
    Description: Within the accretionary prism offshore SW Taiwan, widespread gas hydrate accumulations are postulated to occur based on the presence of a bottom simulating reflection. Methane seepage, however, is also widespread at accretionary ridges offshore SW Taiwan and may indicate a significant loss of methane bypassing the gas hydrate system. Four Way Closure Ridge, located in 1,500 m water depth, is an anticlinal ridge that would constitute an ideal trap for methane and consequently represents a site with good potential for gas hydrate accumulations. The analysis of high-resolution bathymetry, deep-towed sidescan sonar imagery, high-resolution seismic profiling and towed video observations of the seafloor shows that Four Way Closure Ridge is and has been a site of intensive methane seepage. Continuous seepage is mainly evidenced by large accumulations of authigenic carbonate precipitates, which appear to be controlled by the creation of fluid pathways through faulting. Consequently, Four Way Closure Ridge is not a closed system in terms of fluid migration and seepage. A conceptual model of the evolution of gas hydrates and seepage at accretionary ridges suggests that seepage is common and may be a standard feature during the geological development of ridges in accretionary prisms. The observation of seafloor seepage alone is therefore not a reliable indicator of exploitable gas hydrate accumulations at depth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-11
    Description: Large volcanic debris flows associated with volcanic island flank collapses may cause devastating tsunamis as they enter the ocean. Computer simulations show that the largest of these volcanic debris flows on oceanic islands such as Hawaii or the Canaries can cause ocean-wide tsunamis (Løvholt et al., 2008; Waythomas et al., 2009). However, the magnitude of these tsunamis is subject to on-going debate as it depends particularly on landslide transport and emplacement processes (Harbitz et al. 2013). A robust understanding of these factors is thus essential in order to assess the hazard of volcanic flank collapses. Recent studies have shown that emplacement processes are far more complex than assumed previously. With a collapsed volume of about 5 km3 the 1888 Ritter Island flank collapse is the largest in historic times and represents an ideal natural laboratory for several reasons: (I) The collapse is comparatively young and the marine deposits are clearly visible, (II) the pre-collapse shape of the island is historically documented and (III) eyewitness reports documenting tsunami arrival times, run-up heights and inundation levels on neighboring islands are available. We propose to collect bathymetric, high resolution 2D and 3D seismic data as well as seafloor samples from the submarine deposits off Ritter Island to learn about the mobility and emplacement dynamics of the 1888 flank collapse landslide. A comparison to similar studies from other volcanic islands will provide an improved understanding of emplacement processes of volcanic island landslides and their overall tsunamigenic potential. In addition, a detailed knowledge of the 1888 landslide processes in combination with tsunami constraints from eyewitness reports provides a unique possibility to determine the landslide velocity, which can then be used in subsequent hazard analyses for ocean islands.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...