GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (3)
Document type
Publisher
Years
Year
  • 1
    Publication Date: 2023-02-08
    Description: South-Eastern Brazil experienced a devastating drought associated with significant agricultural losses in austral summer 2014. The drought was linked to the development of a quasi-stationary anticyclone in the South Atlantic in early 2014 that affected local precipitation patterns over South-East Brazil. Previous studies have suggested that the unusual blocking was triggered by tropical Pacific sea surface temperature (SST) anomalies and, more recently, by convection over the Indian Ocean related to the Madden-Julian Oscillation. Further investigation of the proposed teleconnections appears crucial for anticipating future economic impacts. In this study, we use numerical experiments with an idealized atmospheric general circulation model forced with the observed 2013/2014 SST anomalies in different ocean basins to understand the dominant mechanism that initiated the 2014 South Atlantic anticyclonic anomaly. We show that a forcing with global 2013/2014 SST anomalies enhances the chance for the occurrence of positive geopotential height anomalies in the South Atlantic. However, further sensitivity experiments with SST forcings in separate ocean basins suggest that neither the Indian Ocean nor tropical Pacific SST anomalies alone have contributed significantly to the anomalous atmospheric circulation that led to the 2014 South-East Brazil drought. The model study rather points to an important role of remote forcing from the South Pacific, local South Atlantic SSTs, and internal atmospheric variability in driving the persistent blocking over the South Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Originating in the equatorial Pacific, the El Niño–Southern Oscillation (ENSO) has highly consequential global impacts, motivating the need to understand its responses to anthropogenic warming. In this Review, we synthesize advances in observed and projected changes of multiple aspects of ENSO, including the processes behind such changes. As in previous syntheses, there is an inter-model consensus of an increase in future ENSO rainfall variability. Now, however, it is apparent that models that best capture key ENSO dynamics also tend to project an increase in future ENSO sea surface temperature variability and, thereby, ENSO magnitude under greenhouse warming, as well as an eastward shift and intensification of ENSO-related atmospheric teleconnections — the Pacific–North American and Pacific–South American patterns. Such projected changes are consistent with palaeoclimate evidence of stronger ENSO variability since the 1950s compared with past centuries. The increase in ENSO variability, though underpinned by increased equatorial Pacific upper-ocean stratification, is strongly influenced by internal variability, raising issues about its quantifiability and detectability. Yet, ongoing coordinated community efforts and computational advances are enabling long-simulation, large-ensemble experiments and high-resolution modelling, offering encouraging prospects for alleviating model biases, incorporating fundamental dynamical processes and reducing uncertainties in projections. Key points Under anthropogenic warming, the majority of climate models project faster background warming in the eastern equatorial Pacific compared with the west. The observed equatorial Pacific surface warming pattern since 1980, though opposite to the projected faster warming in the equatorial eastern Pacific, is within the inter-model range in terms of sea surface temperature (SST) gradients and is subject to influence from internal variability. El Niño–Southern Oscillation (ENSO) rainfall responses in the equatorial Pacific are projected to intensify and shift eastward, leading to an eastward intensification of extratropical teleconnections. ENSO SST variability and extreme ENSO events are projected to increase under greenhouse warming, with a stronger inter-model consensus in CMIP6 compared with CMIP5. However, the time of emergence for ENSO SST variability is later than that for ENSO rainfall variability, opposite to that for mean SST versus mean rainfall. Future ENSO change is likely influenced by past variability, such that quantification of future ENSO in the only realization of the real world is challenging. Although there is no definitive relationship of ENSO variability with the mean zonal SST gradient or seasonal cycle, palaeoclimate records suggest a causal connection between vertical temperature stratification and ENSO strength, and a greater ENSO strength since the 1950s than in past centuries, supporting an emerging increase in ENSO variability under greenhouse warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Naturally occurring tropical Pacific variations at timescales of 7–70 years — tropical Pacific decadal variability (TPDV) — describe basin-scale sea surface temperature (SST), sea-level pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, which can originate through oceanic processes, atmospheric processes or as an El Niño/Southern Oscillation (ENSO) residual. In this Review, we synthesize knowledge of these mechanisms, their characteristics and contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and the propagation of salinity-compensated temperature (spiciness) anomalies from the subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal variability leading to tropical and subtropical wind anomalies, which result in equatorial SST anomalies and feedbacks that enhance persistence; and atmospheric teleconnections from Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby wave activity is likely a dominant mechanism. A deeper understanding of the origin and spectral characteristics of TPDV-related winds is a key priority.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...