GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sen Gupta, A., Thomsen, M., Benthuysen, J. A., Hobday, A. J., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Perkins-Kirkpatrick, S., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., & Smale, D. A. Drivers and impacts of the most extreme marine heatwaves events. Scientific Reports, 10(1), (2020): 19359. doi:10.1038/s41598-020-75445-3.
    Description: Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.
    Description: Concepts and analyses were developed during three workshops organized by an international working group on marine heatwaves (https://www.marineheatwaves.org) funded by a University of Western Australia Research Collaboration Award and a Natural Environment Research Council (UK) International Opportunity Fund (NE/N00678X/1). D.A.S. is supported by a UKRI Future Leaders Fellowship (MR/S032827/1). The Australian Research Council supported T.W. (FT110100174 and DP170100023) and A.S.T. (FT160100495). N.J.H. and L.V.A. are supported by the ARC Centre of Excellence for Climate Extremes (CE170100023). M.S.T was supported by the Brian Mason Trust. P.J.M. is supported by a Marie Curie Career Integration Grant (PCIG10-GA-2011–303685) and a Natural Environment Research Council (UK) Grant (NE/J024082/1). E.C.J.O. was supported by National Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant RGPIN-2018-05255 and Marine Environmental Observation, Prediction and Response Network (MEOPAR) project 1-02-02-059.1. C.C.U. acknowledges financial support through the Early Career Scientist Endowed Fund, George E. Thibault Early Career Scientist Fund, and The Joint Initiative Awards Fund from the Andrew W. Mellon Foundation at WHOI. M.G.D. received funding by the Spanish Ministry for the Economy, Industry and Competitiveness Ramón y Cajal 2017 grant reference RYC-2017-22964. NOAA High Resolution SST data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Naturally occurring tropical Pacific variations at timescales of 7–70 years — tropical Pacific decadal variability (TPDV) — describe basin-scale sea surface temperature (SST), sea-level pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, which can originate through oceanic processes, atmospheric processes or as an El Niño/Southern Oscillation (ENSO) residual. In this Review, we synthesize knowledge of these mechanisms, their characteristics and contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and the propagation of salinity-compensated temperature (spiciness) anomalies from the subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal variability leading to tropical and subtropical wind anomalies, which result in equatorial SST anomalies and feedbacks that enhance persistence; and atmospheric teleconnections from Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby wave activity is likely a dominant mechanism. A deeper understanding of the origin and spectral characteristics of TPDV-related winds is a key priority.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...