GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Water-Pollution. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (446 pages)
    Edition: 1st ed.
    ISBN: 9780128189665
    DDC: 363.7394
    Language: English
    Note: Front Cover -- Inorganic Pollutants in Water -- Copyright Page -- Contents -- List of contributors -- Preface -- Acknowledgment -- 1 Inorganic water pollutants -- 1.1 Water: a natural resource and a basic need -- 1.2 Water pollution due to inorganic chemicals -- 1.3 Major inorganic water pollutants -- 1.3.1 Water contamination by heavy metals -- 1.3.1.1 Health problems due to heavy metals concentration in water -- 1.3.1.2 Removal of heavy metals from water -- 1.3.2 Water contamination by arsenic -- 1.3.2.1 Sources of arsenic contamination in water -- 1.3.2.2 Adverse health effects of high arsenic concentration in water -- 1.3.2.3 Removal of arsenic from aqueous solutions -- 1.3.3 Water contamination by nitrate -- 1.3.3.1 Nitrate contamination: global and Indian scenario -- 1.3.3.2 Sources of nitrate in water -- 1.3.3.3 Adverse human health effects of nitrate contamination in water -- 1.3.3.4 Removal techniques of nitrate from water -- 1.3.4 Fluoride contamination in groundwater -- 1.3.4.1 Fluoride contamination: global and Indian scenario -- 1.3.4.2 Sources of fluoride in water -- 1.3.4.3 Adverse human health effects of fluoride contamination in water -- 1.3.4.4 Removal of fluoride from aqueous solutions -- 1.4 Concluding remarks and future scope -- References -- Further reading -- 2 Types of inorganic pollutants: metals/metalloids, acids, and organic forms -- 2.1 Introduction -- 2.2 Inorganic pollutants in water and their sources -- 2.3 Types of inorganic water pollutants: physiochemical properties -- 2.3.1 Metals/metalloids -- 2.3.2 Acids -- 2.3.3 Organic forms -- 2.4 Status of water resources contamination with inorganic water pollutants -- 2.5 Health effects of inorganic water pollutants -- 2.6 Conclusions -- Acknowledgment -- References -- Further reading -- 3 Priority and emerging pollutants in water. , 3.1 Introduction: inorganic water pollutants -- 3.2 Emerging water pollutants -- 3.3 Priority water pollutants -- 3.4 Sources of emerging inorganic water pollutants -- 3.5 Health effects of inorganic water pollutants -- 3.6 Future outlook -- 3.7 Conclusion -- Acknowledgment -- References -- Further reading -- 4 Policy and regulatory framework for inorganic contaminants -- 4.1 Introduction -- 4.2 Drinking water quality standard (focus on inorganic contaminants) -- 4.3 Main sources of inorganic pollutants -- 4.3.1 Geogenic sources -- 4.3.2 Anthropogenic sources of heavy metals -- 4.3.3 Mining industries -- 4.3.4 Coal-based thermal power plants -- 4.3.5 Domestic wastewater effluents -- 4.3.6 Runoff storm water -- 4.4 Water policies of India -- 4.4.1 National Water Policy (1987) -- 4.4.1.1 Limitations -- 4.4.2 National Water Policy (2002) -- 4.4.2.1 Limitations -- 4.4.3 National Water Policy (2012) -- 4.4.3.1 Principles of National Water Policy, 2012 -- 4.4.3.2 Other aspects of National Water Policy 2012 -- 4.4.3.2.1 Conservation of river corridors and water bodies -- 4.4.3.2.2 Water supply and sanitation -- 4.4.3.2.3 Limitations of national Water Policy 2012 -- 4.4.4 Comparison of all national water policies -- 4.5 Water Regulatory Framework of India -- 4.5.1 Ministry of the Environment, Forest, and Climate Change -- 4.5.2 Ministry of Water Resource -- 4.5.2.1 National Water Framework Bill (2016) -- 4.5.2.1.1 Standard for water quality and water footprints -- 4.5.2.1.2 Preservation of water quality -- 4.5.2.1.3 Industrial water management -- 4.5.3 Institutes for regulation of water resources in India -- 4.5.3.1 Central Pollution Control Board and State Pollution Control Board -- 4.5.3.1.1 Functions of state pollution control boards -- 4.5.3.1.2 Powers of Central Pollution Control Board and State Pollution Control Board. , 4.5.3.2 Central Water Commission -- 4.5.3.3 Central Ground Water Board -- 4.6 Water quality legislative in India -- 4.6.1 Water (Prevention and Control of Pollution) Act, 1974 -- 4.6.1.1 Section 20-Power to obtain information -- 4.6.1.2 Section 21-Powers to take samples of effluents -- 4.6.1.3 Section 23-Powers of entry and inspection, and Section 24-Prohibition on use of stream or well for disposal of poll... -- 4.6.1.4 Section 25-Emergency measures in the case of pollution of stream and well -- 4.6.1.4.1 Limitations of the act -- 4.6.2 The Water (Prevention and Control of Pollution) Bill, 2014 -- 4.6.3 Environment Protection Act, 1986 -- 4.6.4 The Water (Prevention and Control of Pollution) Cess Act, 1977 -- 4.7 Water pollution monitoring -- 4.7.1 Water monitoring for inorganic pollutants -- 4.8 Reformation of regulatory framework -- 4.8.1 Strengthening of compliance and monitoring system -- 4.8.2 Enhancement of sewage treatment capacity -- 4.8.3 Use of low-cost technologies for metal removal -- 4.8.4 Standards for agricultural wastewater and industrial and mine runoff -- References -- Further reading -- 5 Assessment of the negative effects of various inorganic water pollutants on the biosphere-an overview -- 5.1 Introduction -- 5.2 Various nonmetallic cum inorganic water pollutants -- 5.2.1 Phosphates -- 5.2.2 Nitrates/nitrites -- 5.2.3 Chloride -- 5.2.4 Fluoride -- 5.2.5 Ammonia -- 5.2.6 Hydrogen sulfide -- 5.2.7 Asbestos (a silicate mineral) -- 5.3 Various metal- and metal complexes-based water pollutants -- 5.3.1 Impact of pure metal-based nanosubstances -- 5.4 Effects of acidic and basic inorganic pollutant species on water bodies -- 5.5 Environmental contamination of inorganic nanosubstances -- 5.6 Qualitative and quantitative measurement of inorganic pollutants -- 5.7 Guidelines for inorganic water pollutants. , 5.8 Conclusive remarks and recommendations -- References -- Further reading -- 6 Analytical methods of water pollutants detection -- 6.1 Introduction -- 6.2 Detection procedures -- 6.2.1 Direct analysis of pollutants -- 6.2.1.1 Biological factors -- 6.2.1.2 Chemical factors -- 6.2.1.3 Radiological factors -- 6.2.2 Toxicity test -- 6.2.3 New detection technologies -- 6.2.3.1 Algae, to detect water contamination -- 6.2.3.2 Carbon nanotube sensors -- 6.2.3.3 Fluorescent bacteria -- 6.2.3.4 Active electrochemical bacteria (biological sensors) -- 6.2.4 Water quality parameters to detect pollutants -- 6.3 Contamination warning systems -- 6.3.1 Online pollutant monitoring -- 6.3.2 Online sensor technology -- 6.3.3 Computational procedures -- 6.4 Conclusion -- References -- Further reading -- 7 Methods of inorganic pollutants detection in water -- 7.1 Introduction -- 7.2 Various detection methodologies -- 7.2.1 Conventional methodologies -- 7.2.1.1 Mass spectroscopy -- 7.2.1.1.1 Ionization sources -- 7.2.1.2 Atomic absorption spectroscopy -- 7.2.2 Absorption spectrometry -- 7.2.2.1 Colorimetric/plasmonic sensing -- 7.2.2.2 Surface-enhanced Raman scattering-based sensing -- 7.2.2.3 Fluorescence spectroscopy -- 7.2.3 Electrochemical detection -- 7.2.3.1 Amperometric -- 7.2.3.2 Voltammetry -- 7.2.3.3 Electrochemical impedance spectroscopy -- 7.2.4 Potentiometric detection -- 7.2.4.1 Biosensors -- 7.2.4.2 Description about biosensors -- 7.2.4.3 Block diagram description -- 7.3 Conclusion and future prospect -- Acknowledgment -- References -- Further reading -- 8 Organic linkers for colorimetric detection of inorganic water pollutants -- 8.1 Introduction -- 8.2 Inorganic pollutants -- 8.3 Organic linkers (chemosensor) -- 8.3.1 Characteristic of chemosensors -- 8.3.2 Schiff base sensors -- 8.3.3 Schiff base sensors for colorimetric detection of heavy-metal ions. , 8.3.3.1 Colorimetric chemosensor for Hg2+ ions -- 8.3.3.2 Colorimetric chemosensor for Cu2+ ions -- 8.3.3.3 Colorimetric chemosensor for Co2+ ions -- 8.3.3.4 Colorimetric chemosensor for Fe2+/Fe3+ ions -- 8.3.3.5 Colorimetric chemosensor for Cr3+ ions -- 8.3.3.6 Colorimetric chemosensor for Mn2+ ions -- 8.3.3.7 Colorimetric chemosensor for Ni2+ ions -- 8.3.3.8 Colorimetric chemosensor for Zn2+ ions -- 8.3.3.9 Colorimetric chemosensor for Ag2+ ions -- 8.4 Dye-based colorimetric sensor -- 8.4.1 Copper ion sensors -- 8.4.2 Chromium ion sensors -- 8.4.3 Lead ion sensors -- 8.4.4 Mercury ion sensors -- 8.5 Conclusion -- 8.6 Future outlook -- References -- Further reading -- 9 Materials in surface-enhanced Raman spectroscopy-based detection of inorganic water pollutants -- 9.1 Introduction: water pollutants -- 9.2 Health effects of inorganic pollutants -- 9.3 Surface-enhanced Raman scattering -- 9.4 Surface plasmon in surface-enhanced Raman spectroscopy -- 9.4.1 Materials in surface-enhanced Raman spectroscopy-based sensing -- 9.4.2 Surface-enhanced Raman spectroscopy for detection of inorganic pollutants -- 9.5 Conclusion -- Acknowledgment -- References -- Further reading -- 10 Low-cost adsorbents for removal of inorganic impurities from wastewater -- 10.1 Introduction -- 10.2 Significance of low-cost adsorbents -- 10.3 Inexpensive adsorbents utilized for treating inorganic contaminants -- 10.3.1 Chitosan -- 10.3.1.1 Magnetic chitosan -- 10.3.2 Zeolites -- 10.3.3 Natural clays -- 10.3.4 Biochar -- 10.3.4.1 Dairy manure-derived biochar -- 10.3.4.2 Sugarcane bagasse-based biochar -- 10.3.4.3 Biomass-based biochar -- 10.3.5 Wheat straw -- 10.3.5.1 UiO-66 immobilized on wheat straw -- 10.3.6 Walnut shell -- 10.3.7 Magnetized-activated carbon -- 10.3.7.1 Rice straw -- 10.3.7.2 Rice straw-based activated carbon -- 10.3.7.3 Maize tassel-based activated carbon. , 10.3.8 Monomer-grafted cellulose-based adsorbents.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Water-Pollution-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (614 pages)
    Edition: 1st ed.
    ISBN: 9780128240595
    DDC: 363.7394
    Language: English
    Note: Front Cover -- Contamination of Water -- Copyright Page -- Contents -- List of contributors -- Preface -- A. Water contamination -- 1 Contamination of water resources in the mining region -- 1.1 Introduction -- 1.2 Sources of contamination -- 1.2.1 Mining area -- 1.2.1.1 Active and abandoned mines -- 1.2.1.2 Metallic and nonmetallic -- 1.2.1.3 Surface and underground mines -- 1.2.2 Mine waste -- 1.2.2.1 Tailings -- 1.2.2.2 Waste rocks -- 1.2.2.3 Slag -- 1.2.3 Mine water -- 1.3 Pathways of contamination -- 1.3.1 Contamination of surface water resources -- 1.3.2 Contamination of groundwater resources -- 1.4 Impacts of mines on vegetation and humans -- 1.4.1 Vegetation -- 1.4.2 Human health -- 1.5 Remediation methods -- 1.6 Summary -- References -- 2 Contamination of water resources in and around saline lakes -- 2.1 Introduction -- 2.2 Types of saline lakes around the world -- 2.3 Contamination of saline lakes -- 2.3.1 Aral Sea -- 2.3.2 Great Salt Lake -- 2.3.3 Lake Urmia -- 2.3.4 Sambhar Lake -- 2.3.5 Dead Sea -- 2.4 Management and conservation of lakes -- 2.5 Conclusion -- References -- 3 Contamination of groundwater by fly ash heavy metals at landfill sites -- 3.1 Introduction -- 3.2 Fly ash disposal -- 3.3 Wet disposal method -- 3.4 Dry disposal method -- 3.5 Impact of fly ash disposal on groundwater -- 3.6 Status of groundwater contamination -- 3.7 Case study -- 3.7.1 Characterization of fly ash disposed of at landfill sites and groundwater contamination by fly ash heavy metals relea... -- 3.8 Fly ash: heavy metal contaminant -- 3.9 Material method -- 3.10 Results -- 3.10.1 Dry disposal system -- 3.10.1.1 Physio-chemical analysis of dyke ash -- 3.10.1.2 Instrumental analysis -- 3.10.1.2.1 Morphology of dyke ash (pre and postanalysis) -- 3.11 Particle size analysis by dynamic light scattering analyser (pre and postmonsoon analysis). , 3.12 Fourier transform infrared analysis of dyke ash (pre and postmonsoon) -- 3.13 Mineralogy of dyke ash by x-ray diffraction (pre and postanalysis) -- 3.13.1 Wet disposal system -- 3.13.1.1 Physio-chemical analysis -- 3.13.1.2 Instrumental analysis -- 3.13.1.2.1 Morphology of ash by scanning electron microscopy -- 3.14 Particle size analysis of ash by dynamic light scattering -- 3.15 Fourier transform infrared analysis of ash -- 3.16 Mineralogy of ash by x-ray diffraction -- 3.17 Seasonal concentration of heavy metal in fly ash -- 3.18 Discussion -- 3.18.1 Disposal system of fly ash -- 3.19 Dry disposal system of fly ash -- 3.20 Wet disposal system of fly ash -- 3.21 Heavy metal analysis of pre and postmonsoon disposed ash -- 3.22 Conclusion -- References -- 4 Current scenario of heavy metal contamination in water -- 4.1 Introduction: water contamination and measure concerns -- 4.2 Types of water pollutants -- 4.2.1 Organic pollutants -- 4.2.2 Inorganic pollutants -- 4.2.3 Biological pollutants -- 4.2.4 Thermal pollutants -- 4.2.5 Radioactive pollutants -- 4.2.6 Heavy metal contamination in water -- 4.3 Standard permissible limits and sources of heavy metal pollution in water -- 4.3.1 Standard permissible limits for heavy metals in water -- 4.3.2 Sources of heavy metal contamination in water -- 4.3.2.1 Natural source -- 4.3.2.2 Anthropogenic sources -- 4.4 Heavy metal contamination in water sources: environmental and health hazards -- 4.5 Heavy metal decontamination: remediation methods and techniques -- 4.5.1 Oxidation/precipitation -- 4.5.2 Ion exchange -- 4.5.3 Electrokinetic process -- 4.5.4 Membrane filtration/reverse osmosis -- 4.5.5 Bioremediation -- 4.5.6 Adsorption method -- 4.5.6.1 Powder method -- 4.5.6.2 Template method -- 4.6 Concluding remarks and future aspects -- References. , 5 Health impacts due to fluoride contamination in water: current scenario -- 5.1 Introduction -- 5.2 Fluoride chemistry -- 5.3 Sources of fluoride in the environment -- 5.3.1 Minerals/sediment based sources -- 5.3.2 Geothermal sources -- 5.3.3 Anthropogenic resources -- 5.4 Factors responsible for the contribution of fluoride ions to groundwater resources -- 5.5 Fluoride availability in groundwater/drinking water -- 5.6 Bioavailability of fluoride -- 5.7 Effects on human health due to fluoride -- 5.8 Human health risk assessment due to fluoride -- 5.8.1 Health risk assessment tool -- 5.8.2 Categorization of risk for assessment -- 5.8.2.1 Carcinogenic risks -- 5.8.2.2 Noncarcinogenic risks -- 5.8.3 Assessment of risk involved -- 5.8.3.1 Carcinogenic risk assessment and lifelong probability -- 5.8.3.2 Assessment of noncarcinogenic risk -- 5.9 Remedial techniques to remove fluoride from water/waste water -- 5.9.1 Chemical precipitation/coagulation -- 5.9.2 Phytoremediation technique -- 5.9.3 Membrane-based separation process -- 5.9.3.1 Reverse osmosis -- 5.9.3.2 Nanofiltration -- 5.9.3.3 Electrodialysis -- 5.9.4 Ion-exchange method -- 5.9.5 Adsorption -- 5.10 Consumer behavior and use of water -- 5.11 Recommendations -- References -- 6 Contamination of water resources in industrial zones -- 6.1 Introduction -- 6.1.1 Water pollution and pollutants -- 6.1.2 Water scarcity and quality -- 6.1.3 Exposure of industrial contaminants into the water -- 6.2 Types of contaminants present in water resources -- 6.2.1 Organic contaminants -- 6.2.2 Thermal pollution -- 6.2.3 Heavy metals -- 6.2.4 Biological -- 6.3 Negative impacts of contaminants on human health and ecotoxicity -- 6.4 Remediation technology -- 6.4.1 Water remediation by physical and chemical technologies -- 6.4.1.1 Physical method -- 6.4.1.1.1 Pump and treat technology. , 6.4.1.1.2 Air sparging technology -- 6.4.1.1.3 Adsorption technology -- 6.4.1.1.4 Distillation technology -- 6.4.1.2 Chemical treatment technologies -- 6.4.1.2.1 Chemical precipitation method -- 6.4.1.2.2 Ion-exchange method -- 6.4.1.2.3 Carbon adsorption method -- 6.4.1.2.4 Chemical oxidation method -- 6.4.1.2.5 Surfactant increased recovery method -- 6.4.1.2.6 Permeable active barrier method -- 6.4.2 Water remediation by bioremediation and phytoremediation technologies -- 6.4.2.1 Bioremediation -- 6.4.2.2 In-situ bioremediation approach -- 6.4.2.3 Ex-situ bioremediation approach -- 6.4.2.4 Methods of bioremediation -- 6.4.2.4.1 Bioventing method -- 6.4.2.4.2 Landfarming method -- 6.4.2.4.3 Bioreactor method -- 6.4.2.4.4 Bioaugmentation method -- 6.4.2.4.5 Rhizofiltration method -- 6.4.2.4.6 Biostimulation method -- 6.4.2.5 Phytoremediation -- 6.4.2.6 Types of phytoremediation -- 6.4.2.6.1 Phytostabilization approach -- 6.4.2.6.2 Phytovolatilization approach -- 6.4.2.6.3 Phytoextraction or phytoaccumulation approach -- 6.4.2.6.4 Phytofiltration approach -- 6.4.2.6.5 Phytodegradation or phytotransformation approach -- 6.5 Conclusion -- References -- 7 Contamination of groundwater resources by pesticides -- 7.1 Introduction -- 7.2 Historical perspectives of pesticide pollution -- 7.3 The fate of pesticides in the environment -- 7.4 Initial deposition and fate of pesticides in aquatic ecosystems -- 7.5 Impacts of pesticides -- 7.6 Management practices and remedies against pesticide pollution in groundwater -- 7.7 Conclusion and future direction -- References -- 8 Current scenario of pesticide contamination in water -- 8.1 Introduction -- 8.2 Pesticides contamination in water resources -- 8.3 Emerging pesticides as water pollutants -- 8.4 Source of pesticides release in water bodies -- 8.5 Ecological and health risk assessment. , 8.6 Conclusion and future outlook -- Acknowledgement -- References -- B. Health risk assessment -- 9 Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1 -- 9.1 Introduction -- 9.2 Water-a boon to mankind -- 9.2.1 Types of water available -- 9.2.2 Water quality, scarcity, and its importance -- 9.2.3 Water contaminants and its types: conventional and emerging -- 9.2.3.1 Conventional contaminants -- 9.2.3.1.1 Inorganic substance contaminants -- 9.2.3.1.2 Organic contaminants -- 9.2.3.1.3 Biological contaminants -- 9.2.3.1.4 Radiological contaminants -- 9.2.3.2 Emerging water pollutants -- 9.2.4 Different route, causes and sources -- 9.3 Impure or heavy metal contaminated drinking water -- 9.3.1 Mechanism of heavy metal toxicity -- 9.3.1.1 Arsenic toxicity -- 9.3.1.2 Cadmium toxicity -- 9.3.1.3 Chromium toxicity -- 9.3.1.4 Lead toxicity -- 9.3.1.5 Mercury toxicity -- 9.3.2 Adverse effect of heavy metals on human health -- 9.3.3 Heavy metal risk assessment: harms versus benefits -- 9.4 Remediation and mitigation of heavy metals -- 9.4.1 Microbial remediation -- 9.4.2 Bio-sorption technique -- 9.4.3 Chromatographic technique -- 9.4.4 Nanoadsorbent technique -- 9.5 Biotechnological approaches for the detection of contaminants in freshwater -- 9.5.1 Types of biosensors -- 9.5.1.1 Antibody-based biosensors -- 9.5.1.2 Enzyme-based biosensors -- 9.5.1.3 Protein-based biosensors -- 9.5.1.4 Whole cell-based biosensors -- 9.6 Miscellaneous -- 9.7 Conclusion -- References -- 10 Contamination of water resources with potentially toxic elements and human health risk assessment: Part 2 -- 10.1 Introduction -- 10.2 Natural distribution, industrial production, and applications of toxic heavy metals -- 10.2.1 Mercury -- 10.2.2 Arsenic -- 10.2.3 Lead -- 10.2.4 Cadmium -- 10.2.5 Chromium. , 10.3 Heavy metals contamination in water resources.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Climatic changes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (444 pages)
    Edition: 1st ed.
    ISBN: 9780128230978
    DDC: 363.738/74
    Language: English
    Note: Front Cover -- Global Climate Change -- Global Climate Change -- Copyright -- Contents -- Contributors -- Biographies -- 1 - Climate change and existential threats -- 1. Introduction -- 2. The existential threats -- 3. The rise in temperature and global warming -- 4. Melting of glaciers and polar icecaps -- 5. Rise in sea level, sea shape, and sea composition -- 6. Hazards of climate change -- 7. Forest fires -- 8. Heat waves -- 9. Drought -- 10. Floods -- 11. Cyclones, hurricanes, and typhoons -- 12. Loss of biodiversity and impact on flora and fauna -- 13. Health effects -- 14. Food security -- 15. Climate refugees -- 16. Conclusion -- References -- 2 - Impact of climate change on biodiversity and shift in major biomes -- 1. Introduction -- 2. Effects of climate change on biodiversity -- 3. Changes in the recurring life cycle events -- 4. Climatic factors -- 5. Biological responses and ecosystem health -- 6. Buffer and porch effects -- 7. Range shifts -- 8. Extinction risks -- 9. Summary and conclusion -- References -- Further reading -- 3 - Climate-resilient agriculture: enhance resilience toward climate change -- 1. Introduction -- 1.1 Major causes for climate change -- 1.1.1 The natural factors causing climate change -- 1.1.2 Anthropogenic activities -- 1.2 Pros of climate change -- 1.3 Cons of climate change -- 2. Climate-resilient agriculture -- 3. Major programs for climate-resilient agriculture -- 3.1 NICRA: National Innovations on Climate Resilient Agriculture -- 3.2 Objectives of National Innovations on Climate Resilient Agriculture -- 3.3 Village Climate Risk Management Committee -- 4. Smart practices and technologies for climate-resilient agriculture -- 4.1 Conservation of natural resources -- 4.2 Conservation of soil moisture by mulching -- 4.2.1 Benefit of mulching -- 4.3 Conservation agriculture for sustainable land use. , 4.4 Artificial recharging for enhancement of groundwater -- 4.5 Community approach for soil and water conservation -- 4.6 Sustainable crop production under climate change scenario -- 4.6.1 Selection of appropriate crop varieties -- 4.6.2 System of Rice Intensification -- 4.6.3 Aerobic rice cultivation -- 4.6.4 Intensive mixed farming system -- 4.6.5 Soil enrichment using organic manure/amendments and biofertilizers -- 4.6.6 Livestock and fisheries -- 4.6.6.1 Fodder production -- 4.6.6.2 Aquaculture and coping measures -- 5. Institutional interventions -- 5.1 Preserving the genetic diversity -- 5.2 Role of fodder bank in improving the quality of fodder -- 5.3 Custom hiring centers for increasing farm mechanization -- 5.3.1 Benefits from custom hiring centers -- 5.4 Weather Based Crop Insurance -- 6. Village-level weather forecasting -- 7. Conclusion -- References -- 4 - Influence of anthropocene climate change on biodiversity loss in different ecosystems -- 1. Introduction -- 2. Drivers of climate change -- 3. Climate change-induced species response -- 4. Biodiversity loss in terrestrial environment -- 4.1 Montane and subalpines ecosystems -- 4.2 Dryland ecosystems -- 5. Biodiversity loss in aquatic environment -- 5.1 Marine and coral reef ecosystems -- 5.2 Freshwater and wetland ecosystems -- 6. Conclusions -- References -- 5 - Link between air pollution and global climate change -- 1. Air pollution -- 1.1 Air quality standards -- 1.2 Air quality index -- 2. Sources of air pollution -- 2.1 Classification of major air pollution sources -- 2.2 Types of pollutants -- 3. Greenhouse gases -- 3.1 Global warming potential -- 3.2 Residence time -- 4. Greenhouse gases, global warming, and global climate change -- 4.1 Radiative forcing -- 4.2 Net radiative forcing -- 5. Nitrogen oxide emission an indirect greenhouse gas -- 6. Parameters affecting air pollution. , 7. Coupling of air pollution with global warming process -- 8. Design of large-scale facility for effective global warming system -- 9. Current applications and future aspects -- 9.1 Carbon capture and storage/utilization technologies -- 9.2 Concluding remarks -- References -- 6 - Dimensions of climate change and its consequences on ecosystem functioning -- 1. Introduction -- 2. Ozone depletion, UV-B penetration, and their impacts on different ecosystems -- 2.1 Stratospheric ozone depletion -- 2.2 Impacts of ozone depletion on regional and global basis -- 2.3 Impacts of O3 depletion on the regional rainfall and water availability -- 2.4 Impacts of O3 depletion-induced changes in surface temperature on terrestrial ecosystem -- 3. UV radiation -- 3.1 Global climate change due to ozone depletion and UV-B penetration -- 3.2 Impacts of UV-B on terrestrial ecosystem -- 3.3 Impacts of ozone depletion and UV radiation on ecosystem functioning -- 3.4 Impacts of O3 depletion and UV-B penetration on aquatic ecosystem -- 3.5 Climate change-induced alteration in UV radiation exposure of organisms -- 4. Global warming -- 4.1 Impact of global warming on terrestrial ecosystems -- 4.2 Impact of global warming on aquatic ecosystems -- 4.3 Sea level rise and glacier melting -- 5. Effects of climate change on nutrient pollution -- 6. Effects of climate change on thermal pollution -- 7. Increased risks of climate-related disasters -- 7.1 Climate change aggravates the degradation of ecosystem -- 7.2 Proper ecosystem management is essential to reduce the risks of weather events -- 8. Crisis of natural resources -- 8.1 Land degradation -- 8.2 Water crisis -- 8.3 Loss of biodiversity -- 8.4 Marine resources -- 9. National and international meets/conventions on climate change impact and mitigation efforts -- 10. Conclusions -- Acknowledgments -- References. , 7 - Climate change: Impact on agricultural production and sustainable mitigation -- 1. Introduction -- 2. Global climate change -- 3. Impact of climate change on the agricultural sectors -- 3.1 Climate change impact on Indian agriculture -- 3.1.1 Impact on the agricultural ecosystem -- 3.1.2 Impact on the agricultural production -- 3.1.2.1 Rice -- 3.1.2.2 Wheat -- 3.1.2.3 Maize -- 3.1.2.4 Barley -- 3.1.2.5 Pulses -- 3.1.3 Impact on the insect pest and disease development -- 3.1.4 Impact on the use of agrochemicals -- 3.1.5 Impacts on the agricultural economy -- 4. Mitigation and adaptation strategies for the agriculture -- 4.1 Mitigation strategies -- 4.2 Adaptation strategies -- 4.2.1 Soil management practices -- 4.2.2 Shifting the location of seed production industries -- 4.2.3 Shifting crop sowing date -- 4.2.4 Plant breeding and focus on developed variety -- 5. Policy implications -- 6. Conclusion and future prospective -- References -- 8 - Geological records of climate change -- 1. Introduction -- 2. Geological evidence of climate change -- 2.1 Oceanic sediments -- 2.2 Oxygen isotope ratio -- 2.3 Tree rings -- 2.4 Fossils pollen -- 2.5 Coral reefs -- 3. Conclusions -- References -- 9 - Global climate change: the loop between cause and impact -- 1. Introduction -- 2. Natural causes of climate change -- 2.1 Orbital variations and climate change -- 2.1.1 Orbital eccentricity -- 2.1.2 Earth's obliquity -- 2.1.3 Precession -- 2.2 Solar variability and climate change -- 2.2.1 Sunspots and temperature -- 2.2.2 Sunspots and drought -- 2.3 Plate tectonics and climate change -- 2.4 Albedo and climate change -- 2.5 El Nino-Southern oscillation (ENSO) cycle -- 2.6 Volcanic activity and climate change -- 3. Anthropogenic cause -- 3.1 Greenhouse gases -- 3.1.1 Carbon dioxide (CO2) -- 3.1.2 Methane -- 3.1.3 Nitrous oxide (N2O). , 3.1.4 Chlorofluorocarbons (CFCs) -- 3.1.5 Water vapor (H2O) and aerosol -- 4. Effect of climate change -- 4.1 Change in sea level -- 4.2 Ocean acidification -- 4.3 Ozone depletion -- 4.4 Melting of polar ice and glaciers -- 4.5 Enhanced extreme weather events -- 4.6 Food security -- 5. Conclusions -- References -- 10 - Development of abiotic stress-tolerant mustard genotype through induced mutagenesis -- 1. Introduction -- 2. Indicator for different stresses -- References -- 11 - Impact of tropospheric ozone pollution on wheat production in Southeast Asia: an update -- 1. Introduction -- 2. Modern bread wheat: the second most important cash crop -- 2.1 Origin and evolution of modern wheat -- 2.2 Wheat as a major player in green revolution -- 3. Tropospheric ozone: the most toxic secondary air pollutant and climate factor -- 3.1 Good ozone and bad ozone -- 3.2 The genesis of ozone -- 3.3 Absorption in plants and general consequences -- 3.4 Consequences -- 4. Wheat production under ozone pollution: the world scenario -- 5. Case studies: Southeast Asia -- 5.1 Pakistan -- 5.1.1 India -- 5.2 Bangladesh -- 5.3 China -- Acknowledgments -- References -- 12 - Past and present events of climate change: natural versus anthropogenic causes -- 1. Introduction -- 2. Evidence of climate change -- 2.1 Loss of polar ice sheets and mountain glaciers -- 2.2 Ocean acidification -- 2.2.1 Reduced calcification -- 2.3 Change in average surface temperature and precipitation pattern -- 2.4 Sea level rise -- 3. Causes of climate change: natural versus anthropogenic -- 3.1 Natural causes of climate change -- 3.2 Anthropogenic causes of climate change -- 4. Past climatic changes -- 5. Recent trends in climate change -- 5.1 Sea level rise -- 5.2 Shrinking ice -- 5.3 Ocean heat and acidity -- 5.4 Extreme events -- 5.5 Wildfires -- 6. Conclusion -- References. , 13 - Radioecology: dissecting complexities of radionuclide transfer under climate change.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Coastal ecology. ; Coastal zone management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (392 pages)
    Edition: 1st ed.
    ISBN: 9783030842550
    Series Statement: Coastal Research Library ; v.38
    DDC: 333.917
    Language: English
    Note: Intro -- Contents -- Chapter 1: Coastal Ecosystems of India and Their Conservation and Management Policies: A Review -- 1 Introduction -- 2 The Coastal States, Union Territories and Islands of India -- 2.1 Gujarat -- 2.2 Maharashtra -- 2.3 Goa -- 2.4 Karnataka -- 2.5 Kerala -- 2.6 Andhra Pradesh -- 2.7 Tamil Nadu -- 2.8 Odisha -- 2.9 West Bengal -- 2.10 Union Territories of India: Coastal Regions -- 2.10.1 Puducherry -- 2.10.2 Daman and Diu -- 2.10.3 Andaman and Nicobar Islands (ANI) -- 2.10.4 Lakshadweep Islands -- 3 India's Coastal Ecosystems -- 3.1 Mangroves -- 3.1.1 Sundarbans Mangroves (West Bengal) -- 3.1.2 Maharashtra, Karnataka, Kerala and Goa Mangroves -- 3.1.3 Mangroves Pichavaram and Muthupet (Tamil Nadu) -- 3.1.4 Andaman and Nicobar Mangrove (ANI) -- 3.1.5 Mahanadi and Bhitarkanika (Odisha) -- 3.2 Salt Marshes -- 3.3 Seagrasses -- 3.4 Coral Reefs -- 3.5 Lagoons -- 4 India's Coastal Policies -- 4.1 Global Conventions and Coastline Protection Treaties -- 4.1.1 Convention on Biological Diversity (CBD) -- 4.1.2 The Convention on the Conservation of Migratory Species of Wild Animals (CMS) -- 4.1.3 The Convention on International Trade in Endangered Wildlife (CITES) -- 4.1.4 Ramsar Convention on International Important Wetlands -- 4.1.5 Biosphere Reserves -- 4.1.6 Biodiversity Act, 2002 -- 4.1.7 Indian Coastal Zone Regulations -- 5 Conclusion -- References -- Chapter 2: Sources and Distribution of Fecal Coliforms in the Coastal Environment: A Case Study from Chilika Lagoon, Odisha, India -- 1 Introduction -- 1.1 Microbial Indicators of Bacteriological Quality of Water -- 1.2 Monitoring and Assessment of FC -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Water Sampling -- 2.3 Detection of FC Bacteria -- 2.4 Molecular Identification and Phylogenetic Analysis -- 2.5 Antibiotic Susceptibility Profiling and MAR Index. , 2.6 Statistical Analysis -- 2.7 Nucleotide Sequence Accession Numbers -- 3 Results and Discussion -- 3.1 Distribution of FC Bacteria -- 3.2 Spatiotemporal Distribution of FC Bacteria -- 3.3 Inter-annual Variation in FC Bacteria -- 3.4 Molecular Identification and Phylogenetic Analysis -- 3.5 Antibiotic Susceptibility Profile and MAR Index -- 4 Conclusion -- References -- Chapter 3: Seagrass Ecosystems of India as Bioindicators of Trace Elements -- 1 Introduction -- 1.1 Distribution and Ecology of Indian Seagrasses -- 2 Trace Element in Coastal Water, Sediment, and Seagrasses -- 2.1 Trace Element in the Water Column above Seagrass Meadows -- 2.2 Trace Metals in the Sediment of Seagrass Meadows -- 2.3 Role of Sediment Characteristics in Making Trace Elements Bioavailable -- 2.4 Trace Element Accumulation in Seagrasses -- 3 Effects of Trace Elements on Seagrass Physiology -- 4 Future Scenarios and Metal Toxicity on Seagrass -- 5 Conclusions -- References -- Chapter 4: Phosphorus Availability and Speciation in the Intertidal Sediments of Sundarbans Mangrove Ecosystem of India and Bangladesh -- 1 Introduction -- 2 Study Area -- 3 Material and Methods -- 3.1 Sample Collection -- 3.2 Chemicals and Solutions -- 3.3 Total Sedimentary Phosphorus (TSP) -- 3.4 Sequential Extraction Procedure -- 3.5 Reactive Fe Analyses -- 3.6 Porewater Solute Analyses -- 4 Results -- 4.1 Spatial Variability of Phosphorus Fractions -- 4.2 Sediment Characteristics -- 4.3 Porewater Solutes -- 5 Discussion -- 5.1 Sedimentary Phosphorus Species -- 5.1.1 Detrital P (Det-P) and Exchangeable P (Sorb-P) -- 5.1.2 Authigenic CFA -- 5.1.3 Organic P -- 5.1.4 DB-Extractable P (Fe-P) -- 5.2 Bioavailable Phosphorus -- 6 Conclusions -- References -- Chapter 5: Phytoplankton Ecology in Indian Coastal Lagoons: A Review -- 1 Introduction -- 2 Coastal Lagoons of India. , 3 Phytoplankton Diversity and Seasonal Dynamics in Indian Lagoons -- 3.1 East Coast of India -- 3.2 West Coast of India -- 4 Factors Controlling Phytoplankton Distribution and Dynamics in Indian Lagoons -- 4.1 Physical Factors -- 4.1.1 Water Temperature -- 4.1.2 Photic Depth and Turbidity -- 4.1.3 Water Current -- 4.2 Chemical Factor -- 4.2.1 Nutrients -- 4.2.2 Salinity -- 4.2.3 pH -- 4.2.4 Dissolved Oxygen -- 4.2.5 Biochemical Oxygen Demand (BOD) -- 4.3 Geological Factor -- 4.4 Biological Factor -- 4.5 Meteorological Factor -- 4.5.1 Aerosol -- 4.6 Anthropogenic Factor -- 5 Conclusion and Future Research Directions -- References -- Chapter 6: Growing Menace of Microplastics in and Around the Coastal Ecosystem -- 1 Introduction -- 2 Few Sources of Microplastics -- 3 Menace Across the Globe -- 3.1 Effects on Turtles and Dolphins -- 3.2 Effects on Coral Reefs -- 3.3 Effects on Crabs, Fishes -- 3.4 Effects on Seabirds and Oysters -- 3.5 Effects on Benthic Organisms -- 4 Challenges and Recommendations -- 5 Indian Context -- 6 Suggestions -- 7 Conclusion -- References -- Chapter 7: Variability of Nutrients and Their Stoichiometry in Chilika Lagoon, India -- 1 Introduction -- 2 Material and Methods -- 2.1 Study Area -- 3 Methodology -- 4 Results and Discussion -- 4.1 Variability of Physicochemical Parameters -- 4.1.1 Climatic Condition and Bathymetry -- 4.1.2 Factors Responsible for SD Variability -- 4.1.3 pH, DO, and Salinity Variability Factors -- 4.2 Nutrient Dynamics -- 4.2.1 Variability of Dissolved Inorganic Nitrogen Species -- 4.2.2 Variability of Dissolved Inorganic Phosphate -- 4.2.3 Variability of Silicate -- 4.3 Spatiotemporal Variability in Trophic Index -- 4.4 Nutrient Stoichiometry and Influencing Factors -- 4.4.1 N/P -- 4.4.2 Si/P -- 4.4.3 N/Si -- 5 Conclusion -- References. , Chapter 8: A Systematic Review on the Impact of Urbanization and Industrialization on Indian Coastal Mangrove Ecosystem -- 1 Introduction -- 1.1 Global Mangrove Cover -- 1.2 Indian Coastal Mangrove Systems -- 1.3 Threat to Mangrove Ecosystems -- 1.3.1 Natural Influences -- 1.3.2 Anthropogenic Influences -- Agricultural Activities -- Industrial Development -- Heavy Metals -- Nutrients -- Aquaculture -- Oil Spills -- Sand Mining -- Resource Exploitation -- Other Pollutants -- 2 Importance of Mangroves in Controlling Pollution -- 3 Current and Future Threats -- 3.1 Global Warming -- 3.2 Sea-Level Rise -- 3.3 Weather Events -- 4 Management: Restoration and Resilience -- 4.1 Management Activities on Regional Scale -- 5 Conclusion -- References -- Chapter 9: Zooplankton Diversity and Their Spatiotemporal Distribution: An Ecological Assessment from a Brackish Coastal Lagoon, Chilika, Odisha -- 1 Background -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Sampling and Analysis -- 2.2.1 Zooplankton -- 2.2.2 Physicochemical Parameters and Phytoplankton Enumeration -- 2.3 Statistical Analysis -- 3 Results and Discussion -- 3.1 Zooplankton Diversity -- 3.2 Holoplankton -- 3.2.1 Ciliophora -- 3.2.2 Foraminifera -- 3.2.3 Tubulinea -- 3.2.4 Rotifera -- 3.2.5 Hydrozoa -- 3.2.6 Ctenophora -- 3.2.7 Nematoda -- 3.2.8 Annelida -- 3.2.9 Gastropoda -- 3.2.10 Bivalvia -- 3.2.11 Cladocera -- 3.2.12 Copepoda -- 3.2.13 Ostracoda -- 3.2.14 Malacostraca -- 3.2.15 Chaetognatha -- 3.2.16 Chordata -- 3.3 Meroplankton -- 3.4 Microzooplankton Abundances and Community Composition -- 3.5 Zooplankton Abundances and Community Composition -- 3.6 Hydrography and Phytoplankton -- 3.7 Environmental Drivers of Microzooplankton and Zooplankton Communities -- 4 Conclusion -- References -- Chapter 10: Metal Transport and Its Impact on Coastal Ecosystem -- 1 Introduction. , 2 Coastal Ecosystem: An Overview -- 2.1 Mangroves -- 2.2 Coral Reefs -- 2.3 Seagrass Meadows -- 2.4 Lagoon -- 3 Major Sources of Heavy Metals -- 4 Factors Affecting the Mobility of Metals -- 5 Distribution of Heavy Metals -- 6 Health Implications -- 6.1 On Flora -- 6.2 On Nekton -- 6.3 On Benthos -- 6.4 On Planktons -- 6.5 On Humans -- 7 Mitigation Strategies -- 7.1 Proper Treatment at Source -- 7.2 Chemical-Biological Remediation -- 7.3 Bioremediation -- 7.4 Public Awareness and Legislations -- 8 Conclusion -- References -- Chapter 11: A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies -- 1 Introduction -- 1.1 A Brief Outlay of Mangrove Ecosystem (ME) -- 2 Benefits of Mangrove Ecosystem -- 2.1 Provisioning Services -- 2.2 Ecological Services -- 2.3 Supporting Services -- 3 Anthropogenic Threats for Mangrove Ecosystem -- 3.1 Contribution of Aquaculture in Mangrove Loss -- 3.2 Enhancement of Rice Cultivation -- 3.3 Increase of Oil Palm Plantation -- 3.4 Elevated Trends of Urban Sprawling and Industrialization -- 3.5 Extensive Agriculture -- 4 Current Global Status of Mangrove -- 5 Indian Status -- 5.1 Mangrove Status in Southern Parts of India -- 6 Conservation and Management Strategies -- 6.1 Global Approaches to Mangrove Conservation -- 6.2 Inclusion of Human Needs -- 7 The Role of Traditional Knowledge and GIS Is of Great Use in the Management of the Mangrove Ecosystem -- 8 Conclusion -- References -- Chapter 12: Assessment of Total Petroleum Hydrocarbon Accumulation in Crabs of Chilika Lagoon, India -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Sampling and Analysis -- 2.3 Potential Human Health Risk (Olayinka et al. 2019) -- 2.4 Bioaccumulation Factors -- 3 Results and Discussion -- 4 Conclusions -- References. , Chapter 13: Coastal Ecosystem Services of Gujarat, India: Current Challenges and Conservation Needs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Hazardous wastes-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (614 pages)
    Edition: 1st ed.
    ISBN: 9780323859288
    Language: English
    Note: Intro -- Hazardous Waste Management: An Overview of Advanced and Cost-Effective Solutions -- Copyright -- Contents -- Contributors -- Preface -- Section 1: Role of hazardous wastes and their environmental impacts -- Chapter 1: Hazardous wastes and the environment -- 1. Introduction -- 2. Environmental fate -- 3. Environmental science -- 4. Key concepts -- 5. Hazardous waste management hierarchy -- 5.1. Source reduction -- 5.2. Recycling -- 5.3. Disposal and treatment -- 5.4. Hazard incident response -- 6. Life cycles -- 7. Conclusions -- References -- Chapter 2: Hazardous wastes treatment, storage, and disposal facilities -- 1. Introduction -- 2. Definition of hazardous waste -- 2.1. Hazardous waste characterization -- 2.2. Characteristics of hazardous wastes -- 2.2.1. Toxicity -- 2.2.2. Reactivity -- 2.2.3. Corrosivity -- 2.2.4. Ignitability -- 2.3. Hazardous waste management regulatory framework in India -- 2.4. Indian hazardous waste control regulations -- 3. Hazardous waste treatment methods -- 3.1. Physical treatment -- 3.1.1. Gravity separation -- 3.1.1.1. Sedimentation -- 3.1.1.2. Centrifugation -- 3.1.1.3. Flocculation -- 3.1.1.4. Dissolved air flotation -- 3.1.1.5. Heavy media separation -- 3.1.1.6. Macroencapsulation -- 3.1.1.7. Microencapsulation -- 3.1.1.8. Adsorption -- 3.1.1.9. Absorption -- 3.1.1.10. Precipitation -- 3.1.2. Phase change -- 3.1.2.1. Evaporation -- 3.1.2.2. Air stripping -- 3.1.2.3. Steam stripping -- 3.1.2.4. Distillation -- 3.1.3. Dissolution -- 3.1.3.1. Soil washing/flushing -- 3.1.3.2. Chelation -- 3.1.3.3. Liquid/liquid extraction -- 3.1.3.4. Supercritical solvent extraction -- 3.1.4. Size adsorptivity/ionic characteristics -- 3.1.4.1. Filtration -- 3.1.4.2. Carbon adsorption -- 3.1.4.3. Reverse osmosis -- 3.1.4.4. Ion exchange -- 3.1.4.5. Electrodialysis -- 3.2. Chemical treatment. , 3.2.1. Neutralization/precipitation -- 3.2.2. Oxidation and reduction -- 3.2.3. Hydrolysis -- 3.2.4. Photolysis -- 3.2.5. Chemical oxidation -- 3.3. Biological treatment -- 3.3.1. Aerobic degradation -- 3.3.2. Vermicomposting -- 3.3.3. Anaerobic digestion -- 3.4. Thermal treatment -- 3.4.1. Incineration -- 3.4.2. Thermoplastic stabilization -- 3.4.3. Sintering -- 3.4.4. Vitrification -- 4. Storage of hazardous waste -- 5. Disposal of hazardous waste -- 5.1. Aqueous organic treatment -- 5.2. Underground/deep well injection -- 5.3. Incineration -- 5.4. Surface impoundments -- 5.5. Waste piles -- 5.6. Land treatment units -- 5.7. Landfills -- 6. Technological advances -- 6.1. Thermal plasma technology -- 6.2. Bioremediation -- 6.3. Nanofiltration -- 7. Conclusion -- References -- Section 2: Waste management hierarchy -- Chapter 3: Source reduction, recycling, disposal, and treatment -- 1. Introduction -- 2. Source reduction of hazardous waste -- 3. Hazardous waste recycling -- 3.1. Reuse and recycle -- 3.2. Reformation -- 4. Hazardous waste disposal -- 4.1. Detoxification -- 4.2. Landfilling of hazardous waste -- 4.3. Hazardous waste surface impoundments -- 4.4. Waste piles -- 4.5. Ocean dumping of hazardous waste -- 4.6. Injection wells -- 4.7. Underground hazardous waste disposal -- 5. Treatment of hazardous waste -- 5.1. Chemical treatment methods -- 5.1.1. Chemical neutralization and precipitation -- 5.1.2. Hydroxide precipitation -- 5.1.3. Sulfide precipitation -- 5.1.4. Solidification and immobilization -- 5.2. Biological treatment methods -- 5.2.1. Aerobic and anaerobic treatment processes -- 5.2.2. Activated sludge and trickling filter treatment processes -- Biosorption or metabolism-independent process -- Bioaccumulation or metabolism-dependent process -- 5.2.3. Waste stabilization ponds -- 5.2.4. Rotating biocontactors. , 5.3. Thermal treatment method -- 5.3.1. Hazardous waste incinerators -- 5.3.2. Thermal treatment of hazardous waste -- 6. Conclusion and overview -- References -- Chapter 4: Measurement and practices for hazardous waste management -- 1. Introduction -- 1.1. Hazardous waste: Definition according to RCRA -- 1.2. Hazardous waste characteristics -- 1.3. Hazardous wastes list -- 1.4. Different mandatory regulatory measures of hazardous waste measurements -- 2. Hazardous waste measurement practices -- 2.1. Ignitability -- 2.1.1. Reference test methods of ignitability detection -- 2.1.2. Testing procedure -- 2.1.3. Sample storage and handling guidelines -- 2.2. Corrosivity of particular solid waste -- 2.3. Reactivity -- 2.4. Toxicity characteristic leaching procedure -- 2.5. Importance and requirement of waste characterization information -- 3. Minimizing waste generation by process modification and optimization -- 3.1. Process management -- 3.2. Life cycle assessment -- 3.3. Decision support system -- 3.4. Environmental impact assessment -- 4. Emerging technologies for hazardous waste treatment and disposal -- 4.1. Harmless disposal of hazardous solid waste -- 4.2. Hazardous waste categorization -- 4.3. Biological process for treatment of hazardous waste -- 4.3.1. Physicochemical treatment -- Methods for solid waste -- 5. Role of public and private sector organizations in promoting pollution management -- 5.1. Industry -- 5.2. Individual activeness -- 5.3. Role of educators -- 5.4. Role of different organizations of solid waste collection -- 6. International intervention of hazardous chemicals and waste management and their implementation -- 6.1. Basel convention 1981 -- 6.2. Rotterdam convention 1998 -- 6.3. Stockholm convention -- 6.4. London convention -- 6.5. Waigani convention 2001. , 6.6. International convention for the prevention of pollution of ships (MARPOL 73/78) -- 7. Conclusion -- References -- Further reading -- Chapter 5: Policies, issues, and major safety operations in the management of hazardous waste -- 1. Introduction to the hierarchy of the development of policies/acts/regulations to control hazardous wastes from the 20t ... -- 1.1. The Montreal protocol -- 2. US Environmental Protection Agency and hazardous waste management -- 2.1. Defining, identifying, and classifying hazardous waste -- 2.1.1. Definition-Hazardous waste -- 2.1.2. Identification and classification of hazardous waste -- 2.1.2.1. Generation of hazardous waste -- 2.1.2.2. Transportation of hazardous waste -- 2.1.2.3. Recycling, treatment, storage, and disposal of hazardous waste -- 2.2. Regulatory developments for management of hazardous wastes -- 2.2.1. Major requirements and regulations to be followed by hazardous waste generators -- 2.2.2. Regulations for specific wastes -- 2.2.3. Hazardous waste initiatives by the EPA -- 3. Occupational safety and health administration -- 3.1. Types of hazardous waste sites -- 3.2. Planning and organization of hazardous waste sites -- 3.2.1. OSHA's general reporting and record-keeping requirements -- 3.2.2. How to file a complaint regarding a hazardous workplace -- 3.3. Impact of OSHA in controlling hazardous waste management -- 4. The status of waste management in China -- 5. The status of waste management in the European Union -- 6. The Environmental (Protection) Act, 1986 of India -- 7. Some novel and noticed practices of hazardous waste management in other countries -- References -- Section 3: Hazardous waste characteristics and regulations -- Chapter 6: Hazardous waste characteristics and standard management approaches -- 1. Introduction -- 2. Hazardous waste -- 2.1. Definition. , 2.2. Sources or generators of hazardous waste -- 2.3. Classification of hazardous waste -- 2.4. Hazardous waste characteristics -- 2.4.1. Characteristics of ignitability -- 2.4.2. Characteristics of corrosivity -- 2.4.3. Characteristics of reactivity -- 2.4.4. Characteristics of toxicity -- 2.5. Listed hazardous waste -- 3. Environmental impacts of hazardous waste -- 3.1. Water contamination -- 3.2. Soil contamination -- 3.3. Air contamination -- 4. Waste minimization and pollution prevention -- 4.1. Source reduction -- 4.2. Product change -- 4.3. Recycling -- 4.4. Life cycle assessment -- 5. Hazardous waste transportation -- 6. Hazardous waste treatment -- 6.1. Physical treatment -- 6.2. Chemical treatment -- 6.3. Biological treatment -- 6.4. Thermal treatment -- 7. Waste disposal -- 7.1. Landfilling of hazardous waste material -- 7.2. Ocean dumping -- 8. Legislative frameworks -- 8.1. Responsibilities of the generator -- 8.2. Responsibilities of the state pollution control board -- 8.3. Responsibilities of state government -- 9. Future aspects of hazardous waste management -- 10. Conclusion -- References -- Chapter 7: Toxicity and hazardous waste regulations -- 1. Introduction -- 2. Criteria for determining hazardous waste -- 3. Hazardous waste storage -- 4. The problems that may result from the low efficiency of the solid waste system -- 5. Waste recycling -- 5.1. Stages of waste recycling -- 5.2. Means of collection for recycling waste -- 5.3. How to calculate recycling efficiency -- 6. Future vision -- 7. Conclusion -- References -- Section 4: Hazardous wastes management -- Chapter 8: Toxicity and related engineering and biological controls -- 1. Introduction -- 2. Toxicity of hazardous material -- 2.1. Health and environmental risks due to HW mismanagement -- 3. Global trends -- 4. Major sources of HW -- 4.1. Domestic HW. , 4.2. Industrial and commercial hazardous wastes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Wetland conservation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9781119696322
    DDC: 333.918
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Chapter 1 Global Wetlands: Categorization, Distribution and Global Scenario -- 1.1 Wetlands Definition, Categorization and Classification Criteria -- 1.1.1 Wetlands- Categorization and Classification -- 1.1.2 Human- Made Wetlands -- 1.2 Importance of Wetland Ecosystem -- 1.3 Spatial Distribution and Potential of Global Wetlands -- 1.4 Status and Impacts on the Wetlands Ecosystem -- 1.4.1 Conservation Measures and Future Strategies -- 1.4.2 Conclusion and Recommendation -- Acknowledgements -- References -- Chapter 2 Ramsar Convention: History, Structure, Operations, and Relevance -- 2.1 Background -- 2.2 The Ramsar Convention -- 2.3 The Convention Text -- 2.4 Wetland Definition and Classification -- 2.5 Mission of the Convention -- 2.6 Structural Framework of the Convention -- 2.7 Operational Framework of the Convention -- 2.7.1 Convention Membership -- 2.7.2 Ramsar Regions -- 2.7.3 National Ramsar Committees -- 2.7.4 The Montreux Record -- 2.7.5 Ramsar Strategic Plan -- 2.7.6 Three Pillars of Ramsar Convention -- 2.7.7 The Convention Budget -- 2.8 External Partnerships and Synergies -- 2.9 Education and Outreach -- 2.9.1 Communication, Education, Participation, and Awareness (CEPA) -- 2.9.2 World Wetlands Day -- 2.10 Legal Status -- 2.11 Effectiveness of the Convention -- References -- Chapter 3 Ecological Importance of Wetland Systems -- 3.1 Introduction -- 3.2 Importance of Wetlands in Flood Control -- 3.3 Role of Wetlands in Groundwater Replenishment -- 3.4 Role of Wetlands in Stabilization and Storm Protection of Shorelines -- 3.5 Role of Wetlands in Sediment and Nutrient Retention -- 3.6 Role of Wetlands in Water Purification -- 3.7 Biodiversity of Wetlands -- 3.8 Wetland Products -- 3.9 Sociocultural Values of Wetlands. , 3.10 Wetlands in Relation to Recreation and Tourism -- 3.11 Wetland and Climate Change -- 3.12 Summary -- Acknowledgments -- References -- Chapter 4 Ecological and Societal Importance of Wetlands: A Case Study of North Bihar (India) -- 4.1 Introduction -- 4.2 Geographical and District-Wise Distribution of Wetlands in North Bihar -- 4.2.1 Kabartal -- 4.2.2 Baraila Jheel -- 4.2.3 Kusheshwar Asthan -- 4.2.4 Jagatpur Wetland -- 4.2.5 Moti Jheel -- 4.2.6 Gogabeel Pakshi Vihar -- 4.3 Wetlands: Promoters of Sustainable Livelihood and Services -- 4.4 North Bihar Wetland Biodiversity: Status and Role -- 4.5 Urbanization, Pollution, and Climate Change Impacts -- 4.6 Legal Framework, Policies, and Challenges -- 4.7 Conclusion -- Acknowledgments -- References -- Chapter 5 Recognizing Economic Values of Wetland Ecosystem Services: A Study of Emerging Role of Monetary Evaluation of Chandubi Ecosystem and Biodiversity -- 5.1 Introduction -- 5.2 Methodology of Ecosystem Valuation -- 5.2.1 Market Prices - Revealed Willingness to Pay -- 5.2.2 Circumstantial Evidence - Imputed Willingness to Pay -- 5.2.2.1 Damage Cost Avoided, Replacement Cost, and Substitute Cost Methods -- 5.2.3 Surveys - Expressed Willingness to Pay -- 5.2.3.1 Contingent Valuation Method -- 5.2.3.2 Contingent Choice Method -- 5.3 Ecosystem Services of Wetland -- 5.4 Chandubi Wetland: Introduction, Impact, and Introspection -- 5.5 Scaling up Wetland Conservation, Wise Use, and Restoration for Achieving Sustainable Development Goals -- 5.6 Wetlands' Role in Achieving SDGs -- 5.7 Conclusion -- Acknowledgments -- References -- Chapter 6 Ecosystem Services of Lagoon Wetlands System in India -- 6.1 Introduction -- 6.2 Chilika Lagoon -- 6.3 Ecosystem Services Provided by Chilika Lagoon -- 6.3.1 Provisioning Services -- 6.3.2 Regulating Services -- 6.3.3 Cultural Services -- 6.3.4 Supporting Services. , 6.4 Threats and Management of Chilika Lagoon -- 6.5 Pulicat Lagoon -- 6.6 Ecosystem Services Provided by Pulicat Lagoon -- 6.6.1 Provisioning Services -- 6.6.2 Aquatic Flora and Fauna of Pulicat -- 6.6.3 Regulatory Services Provided by Pulicat Lagoon -- 6.6.4 Historical and Cultural Importance of Pulicat Lagoon -- 6.6.5 Supporting Services Provided by Pulicat Lagoon -- 6.6.6 Threats and Management of Pulicat Lagoon -- 6.7 Conclusion -- Acknowledgments -- References -- Chapter 7 Sustainable Practices for Conservation of Wetland Ecosystem -- 7.1 Introduction -- 7.2 Role of Wetlands in the Ecosystem -- 7.3 Challenges to Conserve Wetlands -- 7.4 Wetland Management and Sustainable Development -- 7.5 Future Strategies for Wetland Conservation -- 7.6 Development of the Legal Framework -- 7.7 Technology Intervention with Baseline Data for Wetland Conservation -- 7.8 Development of National Action Plans -- 7.9 Promotion of Research for Conservation Setup -- 7.10 Conclusion -- References -- Chapter 8 Assessing the Benefits, Threats and Conservation of Reservoir-Based Wetlands in the Eastern Himalayan River Basin -- 8.1 Introduction -- 8.1.1 RBWs' Significance and Ignorance -- 8.1.2 RBWs in India -- 8.1.3 The RBWs in the Eastern Himalayas -- 8.2 The RBWs in the Tista Basin -- 8.3 Benefits of Reservoirs as Wetland -- 8.3.1 Ecosystem Services Provided by the RBWs -- 8.4 Assessment of Ecosystem Services in the Tista Basin Provided by the RBWs -- 8.5 Adverse Impact of RBWs -- 8.5.1 Construction and Function of RBWs Across the World -- 8.5.2 Adverse Impact of RBWs in the Eastern Himalayas -- 8.6 Assessment of Impact on the Tista Basin -- 8.7 Potential Challenges and Threats to RBW -- 8.7.1 Anthropogenic Activities -- 8.7.2 Variations in Water Level -- 8.8 Climate Change -- 8.9 Management and Conservation of RBWs -- 8.10 Conclusion -- References. , Chapter 9 Spatiotemporal Evaluation of Causes and Consequences of Wetland Degradation -- 9.1 Introduction -- 9.2 Classification of Wetlands -- 9.3 Causes of and Consequence of Wetland Degradation -- 9.3.1 Natural Causes -- 9.3.1.2 Disintegration of Barrier Islands -- 9.3.1.3 Flooding and Salinization -- 9.3.1.4 Herbivory -- 9.3.1.5 Climate Change -- 9.3.1.6 Major Shifts in a River's Course -- 9.3.2 Anthropogenic Causes of Wetland Loss -- 9.3.2.1 Infrastructure Development -- 9.3.2.2 Land Conversion -- 9.3.2.3 Water Withdrawal -- 9.3.2.4 Eutrophication and Pollution -- 9.3.2.5 Overharvesting and Overexploitation -- 9.3.2.6 Introduction of Invasive Species -- 9.3.2.7 Others -- 9.4 Consequences of Wetland Loss -- 9.4.1 Loss of Biodiversity -- 9.4.2 Decrease in Water Level -- 9.4.3 Loss of Habitat -- 9.4.4 Climate Change -- 9.4.5 Emission of Greenhouse Gases -- 9.4.6 Erosion of River Delta -- References -- Chapter 10 The Status of Current Knowledge, Distribution, and Conservation Challenges of Wetland Ecosystems in Kashmir Himalaya, India -- 10.1 Introduction -- 10.2 Wetlands Over North-Western Kashmir Himalaya -- 10.2.1 Current Status -- 10.2.2 Wetland Classification -- 10.2.3 Wetland Distribution and Extent in Kashmir Himalaya -- 10.3 Wetland Functions and Values -- 10.3.1 Regulatory functions -- 10.3.2 Provisioning Functions -- 10.3.3 Cultural Functions -- 10.3.4 Supporting Functions -- 10.3.5 Economic Values -- 10.4 Drivers of Wetland Degradation -- 10.4.1 Land System Changes -- 10.4.2 Pollution -- 10.4.3 Floating Agriculture -- 10.4.4 Siltation -- 10.4.5 Roads and Railways -- 10.4.6 Plantations -- 10.4.7 Overexploitation -- 10.4.8 Weed Infestation -- 10.4.9 Hunting and Poaching -- 10.4.10 Land Reclamation -- 10.5 Wetland Conservation in Kashmir Himalaya -- 10.5.1 Legal Framework -- 10.5.2 Conservation Challenges -- 10.5.3 Conservation Strategies. , 10.5.4 Knowledge Gaps -- 10.6 Conclusion -- Acknowledgments -- References -- Chapter 11 Heavy Metal Pollution in Coastal Environment and Its Remediation Using Mangroves: An Eco-sustainable Approach -- 11.1 Introduction -- 11.2 Pollution in Mangrove Habitats: A Global Concern -- 11.3 Heavy Metal Cycling in the Mangrove Ecosystem -- 11.4 Heavy Metal Transport, Uptake, and Release -- 11.5 Bioavailability and Concentration of Heavy Metals in the Sediments -- 11.6 Factors Affecting Heavy Metals in the Sediment -- 11.7 Heavy Metal Accumulation in Mangrove Plants -- 11.8 Heavy Metal Remediation Potential of Mangroves -- 11.9 Distribution of Heavy Metals in Different Plant Tissues of Mangrove Species -- 11.10 Application of Phytoremediation to Coastal Pollution Remediation -- 11.10.1 Phytoremediation Using Constructed Wetlands (CWs) Technology -- 11.10.2 Phytoremediation Using Constructed Floating Bed -- 11.11 Eco-remediation Technologies as Sustainable Natural Treatment Systems for Waste Water Treatment -- 11.12 Conclusion and Future Prospects -- References -- Chapter 12 Mangrove Forests: Distribution, Species Diversity, Roles, Threats and Conservation Strategies -- 12.1 Introduction -- 12.2 Mangrove Species Diversity -- 12.3 Geographical Distribution of Mangroves Across the Globe and India -- 12.4 Important Roles of Mangroves -- 12.4.1 Mangrove Forests are the Richest and Most Biodiverse Ecosystems on Earth -- 12.4.2 Aquaculture: Shrimp and Fish Cultivation -- 12.4.3 Protection from Natural Disasters: Mangroves Act as Natural Bioshields Against Natural Disasters -- 12.4.4 Medicinal Value of Mangroves -- 12.5 Threats to Mangroves -- 12.5.1 Human Settlements and Other Developmental Activities -- 12.5.2 Excessive Extraction of Wood -- 12.5.3 Conversion of Mangrove Forests for Farming and Related Activities. , 12.5.4 Conversion of Mangrove Forests for Aquaculture.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Energy development. ; Energy policy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (349 pages)
    Edition: 1st ed.
    ISBN: 9781119741510
    DDC: 333.794
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Chapter 1 Energy Crisis and Climate Change: Global Concerns and Their Solutions -- 1.1 Introduction -- 1.2 Energy Crisis -- 1.3 Role of Renewable Energy in Sustainable Development -- 1.4 Climate Change and Energy Crisis -- 1.5 Climate Change -- 1.5.1 Environmental and Social Consequences of Climate Change -- 1.5.2 Process and Causes of Global Warming -- 1.6 Cleaner Alternatives to Coal to Alleviate Climate Change -- 1.6.1 Carbon Sequestering and Clean Coal -- 1.6.2 Natural Gas and Nuclear Energy -- 1.6.3 Hydrogen -- 1.7 Climate Change and Energy Demand -- 1.8 Mitigation Measures for the Energy Crisis and Global Warming: Reduce Emissions of Greenhouse Gases (IPCC) -- 1.9 Conclusion -- 1.10 Future Considerations -- References -- Chapter 2 Advances in Alternative Sources of Energy: Opening New Doors for Energy Sustainability -- 2.1 Introduction -- 2.2 Need of Novel Research in Alternative Sources of Energy -- 2.3 Recent Advances in Renewable Sources of Energy -- 2.3.1 Solar Energy -- 2.3.2 Wind Energy -- 2.3.3 Hydropower -- 2.3.4 Geothermal Energy -- 2.3.5 Bioenergy -- 2.3.6 Ocean Energy -- 2.4 Future Fuel: Hydrogen -- 2.4.1 Hydrogen Production Methods Using Renewable Sources -- 2.5 Challenges -- 2.5.1 Efficiency -- 2.5.2 Large-Scale Production -- 2.5.3 Cost-Effective Production -- 2.6 Future: Alternative Sources of Energy -- 2.7 Conclusions -- References -- Chapter 3 Recent Advances in Alternative Sources of Energy -- 3.1 Introduction -- 3.2 Different Innovations Employed in Major Types of Alternative Sources of Energy -- 3.2.1 Solar Energy (Semiconductor Technology to Harness Solar Power) -- 3.2.2 Hydropower -- 3.2.3 Wind Energy -- 3.2.4 Geothermal Energy -- 3.2.5 Biomass Energy -- 3.2.6 Hydrogen as a Fuel -- 3.3 Environmental Impacts -- 3.4 Future Prospects. , 3.5 Conclusions -- References -- Chapter 4 Energy and Development in the Twenty-First Century - A Road Towards a Sustainable Future: An Indian Perspective -- 4.1 Introduction -- 4.2 Energy Consumption and Economic Development -- 4.3 Environmental Issues - A Corollary of Economic Development -- 4.4 Air Quality - Deterioration Leading to Development of another Mars -- 4.5 Carbon Footprints - Gift of Mankind to Mother Earth -- 4.6 Sustainable Development -- 4.6.1 Problems Faced by the Country in Implementing Sustainable Development Goals (SDGs) -- 4.6.2 Paris Accord -- 4.6.3 Steps Taken by India to Reduce the Carbon Emission -- 4.7 Coronavirus Pandemic and its Impact on the Carbon Emission -- 4.8 Conclusion -- References -- Chapter 5 Energy Development as a Driver of Economic Growth: Evidence from Developing Nations -- 5.1 Introduction -- 5.2 Energy and Economic Development -- 5.2.1 The Impact of Economic Development on Energy -- 5.2.2 Economic Development and Fluctuations in Energy Consumption -- 5.2.3 Energy Consumption in Developing Nations -- 5.2.4 The Price of Energy and Management of Demand -- 5.3 Energy Services in Developing Nations -- 5.4 Energy Supplies in the Developing Nations -- 5.5 Energy and the Environment in Developing Nations -- 5.6 Conclusion -- References -- Chapter 6 Pathways of Energy Transition and Its Impact on Economic Growth: A Case Study of Brazil -- 6.1 Introduction -- 6.2 The Rationale for Public Investment in Research and Development in Energy Sector -- 6.3 Overview of the Electricity Sector in Brazil -- 6.3.1 Energy Policies in Brazil -- 6.3.2 Climate Change: National Policy 2009 -- 6.3.3 Prioritization of Policies in Choice of Energy Mix (International Atomic Energy Agency, 2006) -- 6.4 Market Structure -- 6.4.1 Government Players -- 6.4.2 Private and Public Players. , 6.5 Programmes and Laws Under the Government of Brazil -- 6.6 An Overview of the Sources of Finance in the Energy Sector: Brazil -- 6.6.1 The Regime for Funding Agency (World Energy Outlook 2013) -- 6.6.2 Source of Funding and Trends in Research and Development -- 6.7 Climate-Resilient Growth: Environmental Consequences -- 6.7.1 Environmental Consequences: Key Takeaways -- 6.8 Social Consequences: Availability, Affordability and Accessibility -- 6.8.1 Social Consequences: Key Takeaways -- 6.9 The Political Economy of Energy Transition: A Brazilian Experience -- 6.10 Interlinking Economic Growth and Energy Use: A Theoretical Construct -- 6.10.1 Renewable Energy Consumption, per Capita GDP Growth, CO2 Emissions, Research and Development Expenditure: A Comparison of BRICS -- 6.11 Conclusion -- Chapter 7 Renewable Energy: Sources, Importance and Prospects for Sustainable Future -- 7.1 Introduction -- 7.2 Sources of Renewable Energy -- 7.2.1 Solar Energy -- 7.2.2 Wind Energy -- 7.2.3 Hydropower -- 7.2.4 Geothermal Energy -- 7.2.5 Biomass -- 7.2.6 Tidal Energy -- 7.3 Advantages and Disadvantages of Various Renewable Energy Resources -- 7.4 Importance of Renewable Energy -- 7.5 Benefits of Renewable Energy Production to the Society -- 7.6 Renewable Energy and Sustainable Development Goals -- 7.7 Limitations in Renewable Energy -- 7.8 Current Status and Future Perspectives -- 7.9 Conclusion -- References -- Chapter 8 Clean Energy Sources for a Better and Sustainable Environment of Future Generations -- 8.1 Introduction -- 8.2 Conventional Sources of Energy -- 8.2.1 Hydro Energy -- 8.2.2 Wind Energy -- 8.2.3 Geothermal Energy -- 8.2.4 Solar Energy -- 8.2.5 Ocean Energy -- 8.3 Environmental Impacts of Renewable Resources -- 8.4 Mitigation Strategies and Sustainable Development of Renewable Resources -- 8.5 Biomass and Microorganisms-Derived Energy. , 8.6 Alternative Energy Resources -- 8.6.1 Biodiesel from Bioengineered Fungi -- 8.6.2 Microbial Fuel Cells (MFCS) -- 8.6.3 Waste-to-Energy Technology -- 8.6.4 Hydrogen as a Fuel -- 8.6.5 Fuel Cell -- 8.6.6 Radiant Energy -- 8.7 Challenges: Implementation to the Usage of Renewable Energy -- 8.7.1 Social Barriers -- 8.7.2 Ecological and Environmental Issues -- 8.7.3 Commercialization and Scalability -- 8.7.4 Material Requirement -- 8.8 Conclusion -- References -- Suggested Readings -- Chapter 9 Sustainable Energy Policies of India to Address Air Pollution and Climate Change -- 9.1 Introduction -- 9.2 Energy Sector of India -- 9.2.1 Energy Reserves -- 9.2.2 Production of Energy -- 9.2.3 Consumption of Fossil Fuel and Electricity -- 9.2.4 Energy Sector and Greenhouse Gases Emission -- 9.3 India's Potential and Policies to Exploit Renewable Sources -- 9.3.1 Solar Energy -- 9.3.2 Wind Energy -- 9.3.3 Hydropower -- 9.3.4 Biomass Energy -- 9.4 National Strategies to Promote Renewable Energy: Policy Framework with Their Objectives -- 9.4.1 India's Electricity Act -- 9.4.2 National Electricity Policy (NEP), 2005 -- 9.4.3 NAPCC-National Action Plan on Climate Change, 2008 -- 9.4.4 Copenhagen Accord -- 9.4.5 India's Intended Nationally Determined Contribution (INDC) -- 9.5 Financial Instruments to Promote Renewable Sources in India -- 9.5.1 Coal Tax -- 9.5.2 Subsidy Cuts on Fossil Fuels -- 9.5.3 Renewable Energy Certificates (RECs) -- 9.5.4 Perform, Achieve and Trade Scheme -- 9.5.5 Other Government Policies, Their Budget and Status -- 9.6 Conclusion -- References -- Chapter 10 A Regime Complex and Technological Innovation in Energy System: A Brazilian Experience -- 10.1 Introduction -- 10.2 Brazil: Its Changing Role in Global Governance -- 10.3 Brazilian Energy: A Regime Complex -- 10.3.1 Role of Brazil and Regime Complex for Climate Change. , 10.4 Implications of Climate Regime on Brazilian Energy Regime -- 10.5 A Shift in Energy Regime: Technological Innovations in Energy Sector -- 10.6 Conclusion -- References -- Websites -- Chapter 11 Opportunities in the Living Lights: Special Reference to Bioluminescent Fungi -- 11.1 Introduction -- 11.2 History of Bioluminescence -- 11.3 Bioluminescence in Terrestrial Organisms -- 11.4 Bioluminescence Molecules -- 11.5 Bioluminescent Fungi -- 11.5.1 Diversity -- 11.5.2 Mechanism of Bioluminescence in Fungi -- 11.5.3 Significance -- 11.6 Opportunities in Fungal Bioluminescence -- 11.6.1 Glowing Tree -- 11.6.2 Bioassay of Toxicity -- 11.6.3 In-Vivo Imaging -- 11.6.4 Animal Model Study -- 11.6.5 Bioactive Secondary Metabolites -- 11.7 Conclusion -- References -- Chapter 12 Production of Liquid Biofuels from Lignocellulosic Biomass -- 12.1 Introduction -- 12.2 Ethanol from Lignocellulosic Biomass -- 12.2.1 Pretreatment of LCB -- 12.2.2 Detoxification -- 12.2.3 Hydrolysis -- 12.2.4 Fermentation -- 12.2.5 Product Recovery -- 12.3 Bio-gasoline from Lignocellulosic Biomass -- 12.3.1 Hydrolysis to Monosaccharides -- 12.3.2 Hydrogenation of Monosaccharides to Polyols -- 12.3.3 Conversion of Polyols and Carbohydrates to C5/C6 Alkanes -- 12.4 Jet Fuels from Lignocellulosic Biomass -- 12.4.1 Production of Jet Fuels from Sugars and Platform Molecules -- 12.4.2 Production of Oil to Jet Fuels -- 12.4.3 Production of Gas to Jet Fuels -- 12.4.4 Production of Alcohol to Jet Fuels -- 12.5 Conversion of Lignin to Hydrocarbons -- 12.6 Conclusion -- References -- Chapter 13 Sustainable Solution for Future Energy Challenges Through Microbes -- 13.1 Introduction -- 13.2 Importance of Energy and Energy Statistics -- 13.3 Brief History of Biofuels -- 13.4 Classification of Biofuels -- 13.4.1 First Generation (1G) -- 13.4.2 Second Generation (2G). , 13.4.3 Third Generation (3G).
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: This book deals with the employment of biotechnological aspects for waste treatment including the basic concepts, biochemical processes and various technologies for pollutant reduction and production of value-added products for a cleaner environment.
    Type of Medium: Online Resource
    Pages: 1 online resource (279 pages)
    ISBN: 9781000778083
    Series Statement: Novel Biotechnological Applications for Waste to Value Conversion Ser.
    Language: English
    Note: Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Table of Contents -- Editors -- Contributors -- Preface -- Chapter 1 Bioreactors for Biomass Conversion - Solid-State Fermentation, Slurry Reactors, Airlift Reactors -- 1.1 Introduction -- 1.1.1 Process Type -- 1.1.2 Fermentation -- 1.1.3 Hydrolysis -- 1.1.4 Anaerobic Digestion -- 1.1.5 Reactor Types -- 1.1.5.1 Solid-State Fermentation -- 1.1.5.2 Slurry Reactor -- 1.1.5.3 Airlift Reactor -- 1.2 Conclusion -- References -- Chapter 2 Immobilised Enzyme Technologies for the Removal of Water Pollutants and Toxic Contaminants -- 2.1 Introduction -- 2.2 Utilisation of Immobilised Enzyme Technology for Bioremediations -- 2.3 Immobilised Enzyme Technologies for Dyes and Phenolic Compounds Removal -- 2.4 Immobilised Enzyme Technologies for Pharmaceutical By-Products Removal -- 2.5 Critical Factors Influencing the Efficiency of Immobilised Enzymes and Their Challenges. -- 2.5.1 Support Materials -- 2.5.2 Operating Parameters -- 2.6 Three Core Values in Advancing Biotechnological Approaches in Waste Management -- 2.7 Advancement of Immobilised Enzymes and Future Prospect in Wastewater Management -- 2.8 Conclusion -- Acknowledgement -- References -- Chapter 3 Value-Added Products from Microalgae -- 3.1 Introduction -- 3.2 Algal Feedstock -- 3.3 Biodiesel -- 3.4 Bio-oil -- 3.5 Biogas -- 3.6 Pretreatments -- 3.7 Factors Affecting the Biomass Conversion -- 3.8 Value-Added Products -- 3.8.1 Pharmaceutical -- 3.8.2 Antimicrobials, Antivirals, and Antifungals -- 3.8.3 Neuroprotective Products -- 3.8.4 Food Technology -- 3.8.5 Specialty Chemicals -- 3.8.6 Biopolymers -- 3.9 Conclusion -- References -- Chapter 4 Cleanup of Marine Oil Spills through Bioremediation Method -- 4.1 Introduction -- 4.2 Sources of Oil Spills Occur in Malaysia -- 4.2.1 Oil Spills in Malaysia and Global. , 4.2.2 Remediation Method to Curb Oil Spills -- 4.2.2.1 Physical Remediation Method -- 4.2.2.2 Chemical Remediation Method -- 4.2.2.3 Thermal Remediation Method -- 4.2.2.4 Biological Remediation Method -- 4.2.3 Analytical Bioremediation Method to Oil Spill -- 4.3 Conclusion -- Acknowledgments -- References -- Chapter 5 Bioreactor Scale-Up Strategies -- 5.1 Introduction -- 5.2 Factors Affecting Bioreactor Scale-Up -- 5.2.1 Physical Factors -- 5.2.2 Chemical Factors -- 5.2.3 Biological Parameters -- 5.2.4 Process Parameters -- 5.3 Bioreactor Scale-Up Strategies -- 5.3.1 Continuously Stirred Tank Bioreactors -- 5.3.2 Bubble Column Bioreactor -- 5.3.3 Airlift Bioreactors -- 5.3.4 Fluidized Bed Bioreactors -- 5.3.5 Packed Bed Bioreactor -- 5.3.6 Photobioreactors -- 5.4 Conclusion -- References -- Chapter 6 Biotechnological Advancements in the Treatment of Plastic Wastes -- 6.1 Introduction -- 6.2 Impact of Plastic Wastes Accumulation -- 6.3 Factors Affecting Degradation Rate of Plastics -- 6.3.1 Environmental Factors -- 6.3.2 Physicochemical Characteristics of Plastics -- 6.4 Microbial Plastic Degradation -- 6.5 Alternative Approaches -- 6.5.1 Genetically Engineered Plastic-Eating Bacteria -- 6.5.2 Effective Enzyme Tools Technology -- 6.5.3 Plastic Substitute Materials -- 6.6 Conclusions -- Acknowledgement -- References -- Chapter 7 Production of Biopolymer from Waste Materials as the Suitable Alternative for Plastics -- 7.1 Introduction -- 7.2 Advantages and Disadvantages of Biopolymers -- 7.3 Waste Materials for Biopolymer Production -- 7.3.1 Lipid and Oil Wastes -- 7.3.2 Milk Waste -- 7.3.3 Sugarcane Molasses -- 7.3.4 Agricultural and Fruit Waste -- 7.3.5 Spent Coffee Waste -- 7.3.6 Biodiesel Production Waste (Glycerol) -- 7.4 Fermentation Process and Optimization of Process Parameters for Biopolymer Production -- 7.4.1 Fermentation Process. , 7.4.2 Optimization of Process Parameters -- 7.4.2.1 Carbon Source and Carbon-Nitrogen (C/N) Ratio -- 7.4.2.2 Temperature -- 7.4.2.3 pH -- 7.4.2.4 Substrate Concentration -- 7.4.2.5 Microbial Load -- 7.4.2.6 Agitation and Dissolved Oxygen -- 7.4.2.7 Feedstock Composition -- 7.5 Limitations and Future Aspects for Biopolymer Production -- 7.6 Conclusion -- Acknowledgments -- References -- Chapter 8 Microbial Pigments Production Using Agricultural Biomass Residues -- 8.1 Introduction -- 8.2 Microbial Pigments Criteria and Its Applications -- 8.3 Types of Agro/Food Waste -- 8.3.1 Dairy Industry Waste -- 8.3.2 Fruit and Vegetable Waste -- 8.3.3 Agro Industrial Residue -- 8.4 Pre-treatment -- 8.5 Fermentation Process in the Development of Microbial Pigments -- 8.6 Genetic Engineering-Based Strain Improvements for Enhancing Pigment Production -- 8.7 Conclusion -- References -- Chapter 9 Nanotechnology-Associated Bioremediation for the Elimination of Emerging Contaminants -- 9.1 Introduction -- 9.2 Contaminants in Wastewater -- 9.3 Basic Wastewater Treatment Process -- 9.4 Application of Nanotechnology in Wastewater -- 9.5 Adsorption -- 9.5.1 Carbon-Based Nanoadsorbents for Adsorption -- 9.5.2 Metal-Supported Nanoadsorbent -- 9.6 Membrane Methods -- 9.6.1 Nanocomposite Membranes -- 9.6.2 Nanofiber Membrane -- 9.6.3 Bio-inspired Membranes -- 9.7 Decontamination and Microbial Control -- 9.8 Photocatalysis -- 9.8.1 Types of Catalysts Used in Photocatalysis Process -- 9.9 Nanotechnology-Assisted Bioremediation -- 9.9.1 Nanobioremediation for Treatment of Polluted Soil -- 9.9.2 Nanobioremediation for Treatment of Waste Water -- 9.10 Conclusion -- References -- Chapter 10 Phytoremediation Potential of Some Bioenergy Crops - A Review -- 10.1 Introduction -- 10.2 Heavy Metal Remediation Processes -- 10.2.1 Physical and Chemical Method -- 10.2.2 Biological Methods. , 10.2.2.1 Phytoremediation -- 10.3 Phytoremediation of Heavy Metal-Polluted Soils by Bioenergy Crops -- 10.3.1 Potential of Bioenergy Crops -- 10.3.2 Types of Bioenergy Crops -- 10.3.3 Biomass Producing Efficiency of Bioenergy Crops during Metal Remediation -- 10.3.4 Metal Removal/Stabilization/Accumulation Efficiency of Bioenergy Crops -- 10.3.5 Strategies to Increase Phytoremediation Potential of Bioenergy Crops - Enhanced Phytoremediation -- 10.3.5.1 Chemical-Assisted Phytoremediation with Bioenergy Crops: Organic or Inorganic Amendments -- 10.3.5.2 Microbial-Assisted HM Phytoremediation with Bioenergy Crops -- 10.3.5.3 Genetic Engineering of Bioenergy Crops to Enhance HM Phytoremediation -- 10.3.6 Energy Production from Utilized Bioenergy Crops -- 10.4 Conclusion and Future Perspective -- References -- Chapter 11 Sustainable Approach for the Extraction of Precious Metals from Electronic Waste Materials -- 11.1 Introduction -- 11.2 Estimation Methods of Electronic Waste (E-waste) -- 11.3 Sustainable Biotechnological Approach for E-waste Recycling -- 11.4 Bioleaching: A Microbial Process of Metal Recovery -- 11.5 Factors Affecting the Recycling Process -- 11.6 Challenges and Perspectives of E-waste Management -- 11.7 Conclusions and Recommendations -- References -- Chapter 12 Conversion of Organic Waste to Economically Valuable Products: Recent Advancements with Challenges -- 12.1 Introduction -- 12.2 Waste Generate and Its Composition -- 12.3 Recycling Options of Organic Wastes -- 12.3.1 Preparation of Food and Feed from Organic Waste -- 12.3.2 Preparation of Biopolymers -- 12.3.3 Collection of Fiber -- 12.3.4 Development of Biocomposite -- 12.3.5 Composting -- 12.3.5.1 Composting Process -- 12.3.5.2 Factors Affecting the Composting Process -- 12.3.5.3 Composting Systems or Methods -- 12.3.5.4 Composting Technologies. , 12.3.5.5 Advances in Organic Waste Composting -- 12.3.6 Bioenergy Generation and Biochar Production -- 12.3.7 Valorization and Bioethanol Production from Waste -- 12.3.8 Biogas Generation and Bio-Slurry Production -- 12.3.8.1 Factors Affecting Anaerobic Digestion Process -- 12.3.8.2 Anaerobic Digestion Technologies -- 12.3.8.3 Co-digestion -- 12.3.8.4 Pretreatment -- 12.3.8.5 Biogas Production Potential and Biomethane Production -- 12.3.9 Solid-State Fermentation -- 12.3.10 Nutrient Harvesting through Combined Pyrolysis and Composting Techniques -- 12.4 Challenges of Waste Recycling -- 12.4.1 Waste Sorting -- 12.4.2 Technologies -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (323 pages)
    Edition: 1st ed.
    ISBN: 9781119853565
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Editors' Biography -- Preface -- Chapter 1 Release, Detection, and Toxicology of Heavy Metals: A Review of the Main Techniques and Their Limitations in Environmental Remediation -- 1.1 Introduction to Heavy Metals: An Overview -- 1.2 Industrial Application of Different Metal Ions -- 1.3 Conclusion -- References -- Chapter 2 Heavy Metals Contamination in Environment -- 2.1 Introduction -- 2.2 Heavy Metals in Water -- 2.3 Heavy Metals in Soil -- 2.4 Heavy Metals in Biota -- 2.5 Heavy Metals in Air -- 2.6 Conclusion -- References -- Chapter 3 A Brief Study of the Effects of Heavy Metals and Metalloids on Food Crops -- 3.1 Introduction -- 3.2 Sources of Heavy Metals in Soils and Food Crops -- 3.3 Impacts on Soil-Plants/Food Crops -- 3.3.1 Metal Ions Transportation in Plants -- 3.4 Heavy Metals and Soil Microbes -- 3.5 Effect of Chromium (Cr) on Plants -- 3.6 Effect of Lead (Pb) on Plants -- 3.7 Effect of Arsenic (As) on Plants -- 3.8 Effect of Cadmium (Cd) on Plants -- 3.9 Effect of Mercury (Hg) on Plants -- 3.10 Effect of Nickel (Ni) on Plants -- 3.11 Future Perspectives -- 3.12 Conclusion -- References -- Chapter 4 Impact of Heavy Metals on Human Health -- 4.1 Introduction -- 4.2 Mercury -- 4.2.1 Source and Entry of Mercury Metal into Our Body -- 4.2.2 Biological Impact of Mercury Metal -- 4.2.3 Detection and Remedial Techniques for Mercury Metals -- 4.3 Arsenic -- 4.3.1 Source and Entry of Arsenic Metal into Our Body -- 4.3.2 Biological Impact of Arsenic Metal -- 4.3.3 Detection and Remedial Techniques for Arsenic Metals -- 4.4 Iron -- 4.4.1 Source and Entry of Iron Metal into Our Body -- 4.4.2 Biological Impact of Iron Metal -- 4.4.3 Detection and Remedial Techniques for Arsenic Metals -- 4.5 Manganese -- 4.5.1 Source and Entry of Manganese Metal into Our Body. , 4.5.2 Biological Impact of Manganese Metal -- 4.5.3 Detection and Remedial Techniques for Manganese Metals -- 4.6 Zinc -- 4.6.1 Source and Entry of Zinc Metal into Our Body -- 4.6.2 Biological Impact of Zinc Metal -- 4.6.3 Detection and Remedial Techniques for Zinc Metals -- 4.7 Lead -- 4.7.1 Sources and Exposure of Lead Metal -- 4.7.2 Health and Biological Impact of Lead -- 4.7.3 Detection and Control of Lead Exposure -- 4.8 Chromium -- 4.8.1 Sources and Exposure of Chromium -- 4.8.2 Health and Biological Impact of Chromium -- 4.8.3 Safety Limits and Control -- 4.9 Copper -- 4.9.1 Source and Entry of Copper Metal into Our Body -- 4.9.2 Utility and Biological Impact of Copper -- 4.9.3 Detection and Remedial Techniques of Copper -- 4.10 Cadmium -- 4.10.1 Source and Entry of Cadmium Metal into Our Body -- 4.10.2 Toxicology of Cadmium Poisoning -- 4.10.3 Detection and Remedial Techniques of Cadmium -- 4.11 Nickel -- 4.11.1 Source and Entry of Nickel Metal into Our Body -- 4.11.2 Toxicology of Nickel Poisoning -- 4.11.3 Remedial Techniques -- 4.12 Radioactive Heavy Metals -- 4.12.1 Source of Radioactive Heavy Metals -- 4.12.2 Utility and Biological Impact of Radioactive Metal on Health -- 4.12.3 Detection and Remedial Techniques -- 4.13 Conclusion -- References -- Chapter 5 Different Approaches for Detecting Heavy Metal Ions -- 5.1 Introduction -- 5.2 Detection -- 5.3 Methods of Detection -- 5.3.1 Spectroscopic Detection -- 5.3.2 Electrochemical Methods of Detection -- 5.3.3 Optical Methods of Detection -- 5.4 Conclusion -- References -- Chapter 6 Remediation of Heavy Metals in Environmental Resources Using Physical Methods -- 6.1 Introduction -- 6.2 Toxicity of HMs -- 6.3 Physical Methods for Remediation of HMs from Wastewater -- 6.4 Coagulation and Flocculation -- 6.5 Ion Exchange -- 6.6 Adsorption -- 6.7 Membrane Filtration -- 6.8 Conclusion. , References -- Chapter 7 Chemical Approaches to Remediate Heavy Metals -- 7.1 Introduction -- 7.2 Sources of Heavy Metal -- 7.2.1 Natural Sources -- 7.2.2 Anthropogenic Sources -- 7.3 Chemical Remediation Technique for Heavy Metal Contamination in the Environment -- 7.3.1 Chemical Precipitation -- 7.3.2 Coagulation -- 7.3.3 Ion Exchange -- 7.3.4 Electrochemical Method -- 7.4 Current Challenges and Future Perspectives -- 7.5 Conclusions -- Acknowledgments -- References -- Chapter 8 Carbon-Based Absorption Materials for Heavy Metal Removal -- 8.1 Introduction -- 8.2 Sources of Heavy Metal in Water -- 8.2.1 Human Health and Heavy Metal Toxicity -- 8.2.2 Toxicity of Mercury -- 8.2.3 Toxicity of Lead -- 8.2.4 Toxicity of Arsenic -- 8.2.5 Toxicity of Chromium -- 8.2.6 Toxicity of Cadmium -- 8.3 Effects of Water Environmental Chemistry on Heavy Metal Removal -- 8.3.1 Temperature -- 8.3.2 pH Value -- 8.3.3 Ionic Strength and Coexisting Ions -- 8.4 Carbon-Based Nanomaterials -- 8.4.1 Graphene and Derivatives -- 8.4.2 Activated Carbon -- 8.4.3 Carbon Nanotubes -- 8.4.4 SWCNTs in the Purification of Heavy Metal-Contaminated Water -- 8.4.5 MWCNTs in the Purification of Heavy Metal-Contaminated Water -- 8.4.6 Fullerenes -- 8.5 Adsorption Mechanisms -- 8.5.1 Physical Adsorption -- 8.5.2 Electrostatic Interaction -- 8.5.3 Ion Exchange -- 8.5.4 Surface Complexation -- 8.5.5 Precipitation/Coprecipitation -- 8.6 Conclusion and Outlook -- References -- Chapter 9 Industrial Waste-Derived Materials for Adsorption of Heavy Metals from Polluted Water -- 9.1 Introduction -- 9.2 Industrial Wastes: Origin, Amount, and Harmful Effects -- 9.3 Sources of Heavy Metal Contamination in Water Sources -- 9.3.1 Natural Sources -- 9.3.2 Anthropogenic Sources -- 9.4 Sequestration of Heavy Metals Using Industrial Waste-Derived Adsorbents -- 9.5 Conclusion -- References. , Chapter 10 Biological Remediation of Heavy Metals from Acid Mine Drainage-Recent Advancements -- 10.1 Introduction -- 10.2 Acid Mine Drainage -- 10.2.1 Overview of Acid Mine Drainage -- 10.2.2 Environmental Effects of Acid Mine Drainage -- 10.2.3 Remediation Options/Technologies -- 10.3 Role of Microorganisms in the Formation and Remediation of AMD -- 10.3.1 Role of Microorganisms in the Formation of Acid Mine Drainage -- 10.3.2 Role of Microorganisms in the Remediation of AMD -- 10.4 Bioremediation of Heavy Metals in AMD -- 10.4.1 Arsenic -- 10.4.2 Copper -- 10.4.3 Zinc, Cadmium, and Lead -- 10.4.4 Bioremediation of Manganese and Iron -- 10.5 Bottlenecks and Future Prospects -- 10.6 Conclusions -- References -- Chapter 11 Phytoremediation and Microbe-Assisted Removal of Heavy Metals -- 11.1 Introduction -- 11.2 Popular Floral Profiles in Phytoremediation -- 11.2.1 Heavy Metal Defense Mechanisms in Plants -- 11.2.2 Major Phytoremediation Pipelines by Plants -- 11.2.3 Sequential Process of Phytoimmobilization -- 11.2.4 Phytostabilization -- 11.2.5 Phytoextraction -- 11.2.6 Phytovolatilization -- 11.2.7 Rhizo/Phytofiltration -- 11.3 Assistance of Microorganisms in Phytoremediation -- 11.4 Microbial and Plant Symbiosis in Phytoremediation -- 11.5 Phyto-Microbe Contributory Roles -- 11.6 Conclusion -- References -- Chapter 12 Recycling and Disposal of Spent Metal(loid)-Laden Adsorbents: Current and Emerging Technologies, and Future Directions -- 12.1 Introduction -- 12.2 Nature and Health Concerns/Risks of Spent/Used Adsorbents -- 12.2.1 Nature -- 12.2.2 Potential Environmental Health Risks -- 12.3 Current Recycling and Disposal Technologies -- 12.3.1 Regeneration and Recycling as Adsorbents -- 12.3.2 Land/Soil Application -- 12.3.3 Landfilling -- 12.3.4 Cement Stabilization/Solidification -- 12.4 Emerging Technologies -- 12.4.1 Novel Catalysts. , 12.4.2 Novel Construction Materials -- 12.4.3 Solid Fuels -- 12.4.4 Re-Engineered Adsorbents -- 12.4.5 Novel Raw Materials -- 12.5 Looking Ahead: Future Perspectives and Research Directions -- 12.5.1 Opportunities and Challenges -- 12.5.2 Knowledge Gaps and Future Research Directions -- 12.6 Conclusions and Outlook -- Acknowledgments -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Refuse and refuse disposal. ; Developing countries-Civilization. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (872 pages)
    Edition: 1st ed.
    ISBN: 9780323904643
    DDC: 363.728
    Language: English
    Note: Front Cover -- Waste Management and Resource Recycling in the Developing World -- Copyright Page -- Contents -- List of contributors -- 1 Generation of waste: problem to possible solution in developing and under developing nations -- 1 Waste generation in Brazil: municipal, agricultural, and industrial wastes -- Abbreviations -- 1.1 Introduction -- 1.2 Municipal solid waste -- 1.3 Agricultural waste -- 1.4 Industrial waste -- 1.5 Perspectives -- References -- 2 Generation of waste: problem to possible solution in developing and underdeveloped nations -- 2.1 Introduction -- 2.2 Overview of waste generation scenario -- 2.3 Effect of waste -- 2.3.1 Effect of waste of electrical and electronic equipment -- 2.3.2 Effect of medical waste -- 2.3.3 Effect of industrial waste -- 2.3.4 Effect of municipal solid waste -- 2.4 Current status of waste management -- 2.4.1 Review of some high-income countries -- 2.4.1.1 Singapore -- 2.4.1.2 Malaysia -- 2.4.2 Upper-middle-income countries -- 2.4.2.1 Brazil -- 2.4.2.2 Cuba -- 2.4.3 Lower-middle-income countries -- 2.4.3.1 Kenya -- 2.4.3.2 Ghana -- 2.4.3.3 Nigeria -- 2.4.4 Low-income countries -- 2.4.4.1 Liberia -- 2.4.4.2 Afghanistan -- 2.5 Possible solution -- 2.5.1 Overview -- 2.5.2 Structuring waste management activities -- 2.5.3 Waste to energy and waste to products conversion -- 2.5.4 Landfilling -- 2.5.5 Circular material economy -- 2.5.6 Infrastructure development -- 2.5.7 Managing infectious waste -- 2.5.8 Composting -- 2.5.9 Sustainable recycling -- 2.5.10 Environmental sustainability -- 2.5.11 Public stewardship -- 2.5.12 Novel materials -- 2.5.13 Extended producer responsibility -- 2.6 Conclusion -- 2.7 Future recommendations -- References -- 3 Use of participatory methodologies to improve the management of urban solid waste in Sal Island-Cape Verde. , 3.1 Introduction-issues faced by small island developing states -- 3.2 State of research of municipal solid waste management in small island developing states -- 3.2.1 Waste generation -- 3.2.2 Waste composition -- 3.2.3 Waste selection, transfer and transport -- 3.2.4 Waste management technologies -- 3.2.5 New trend in integrated municipal solid waste and future development -- 3.3 Methodology -- 3.4 Case study-municipal solid waste management in Sal Island -- 3.4.1 Characterization of Sal Island -- 3.4.2 Legal instruments for municipal solid waste management in Cape Verde -- 3.4.3 Benchmark status of municipal solid waste management in Sal Island (interviews with technical staff) -- 3.4.4 Validation of current situation by the focus group -- 3.4.5 Hierarchy of priority measures to be implemented in municipal solid waste management -- 3.5 Conclusions -- References -- 4 Waste characterization in Brazil -- Abbreviations -- 4.1 Introduction -- 4.2 Municipal solid waste -- 4.2.1 Selective waste collection -- 4.2.2 Reverse logistics -- 4.3 Health service waste -- 4.4 Construction and demolition waste -- 4.5 Agricultural waste -- 4.6 Industrial waste -- 4.7 Treatment and final destination -- 4.8 Final considerations and perspectives -- References -- 2 E-waste -- 5 E-waste: sources, management strategies, impacts, and consequences -- 5.1 Introduction -- 5.2 E-Waste-a global issue -- 5.3 Sources of e-waste -- 5.3.1 Toxic substances and their genesis -- 5.4 Generation of e-waste -- 5.5 E-waste recycling -- 5.5.1 Step-by-step process of e-waste recycling -- 5.5.2 Importance of recycling -- 5.5.3 Convenience of recycling -- 5.5.3.1 Reduce pollution -- 5.5.3.2 Protects the ecosystem -- 5.5.3.3 Minimizes global warming -- 5.5.3.4 Reduces environmental pressure -- 5.5.3.5 Reduces waste quantities -- 5.5.3.6 Contributes to the creation of jobs. , 5.5.3.7 Reduces energy consumption -- 5.5.4 Inconvenience of recycling -- 5.5.4.1 High investment -- 5.5.4.2 Recycling sites are always unhygienic, unsafe and unsightly -- 5.5.4.3 Less durability of the generating materials -- 5.6 E-Waste component's reuse -- 5.6.1 Plastic -- 5.6.2 Metal -- 5.6.3 Glass -- 5.6.4 Hg-containing equipment -- 5.6.5 Hard drives -- 5.6.6 Batteries -- 5.7 Effects of e-waste in the environment -- 5.7.1 Air -- 5.7.2 Soil -- 5.7.3 Water -- 5.8 Effects of E-waste on human health -- 5.9 Impacts on agriculture -- 5.10 Management techniques of e-waste -- 5.11 Conclusion -- Acknowledgement -- References -- 6 Translational transport of e-waste and implications on human well beings and the environment -- 6.1 Introduction -- 6.2 Global e-waste generation -- 6.3 Transboundary movement of e-waste -- 6.4 International regulations for the hazardous material transboundary movement -- 6.4.1 Basel convention -- 6.4.2 The rotterdam convention -- 6.4.3 The Stockholm convention -- 6.5 Human health -- 6.6 Environmental effect -- 6.7 Discussion -- 6.8 Conclusion and future perspective -- References -- 7 Electronic (E-waste) conduct: chemical assessment and treatment methods -- 7.1 Introduction -- 7.1.1 Classification of hazardous components of e-waste -- 7.1.1.1 Primary contaminants -- 7.1.1.2 Secondary contaminants -- 7.1.1.3 Tertiary contaminants -- 7.2 Human and environmental effects -- 7.2.1 Impact on environment -- 7.2.2 Impact on human health -- 7.3 Current scenario of processing -- 7.3.1 Informal recycling techniques -- 7.3.2 Formal recycling techniques -- 7.4 Electronic waste legislations -- 7.4.1 Transboundary flow -- 7.4.2 Extended producer responsibility -- 7.5 Policy development in Asia for electronic waste -- 7.6 Analysis of e-waste management policies -- 7.7 Discussion -- 7.8 Conclusion -- Acknowledgments -- References. , 8 Biological methods for the treatment of e-waste -- 8.1 Introduction -- 8.2 Classification of e-waste -- 8.3 Global scenario of e-waste -- 8.4 Disposal methods of e-waste -- 8.4.1 Bioremediation of e-waste -- 8.4.1.1 Biosorption -- 8.4.1.2 Bioaccumulation -- 8.4.1.3 Biomineralization -- 8.4.2 Phytoremediation of e-waste -- 8.4.2.1 Phytostabilization -- 8.4.2.2 Rhizofiltration -- 8.4.2.3 Phytovolatilization -- 8.4.2.4 Phytodegradation -- 8.4.2.5 Use of mycorrhizal fungi and other soil organisms -- 8.4.3 Vermiremediation -- 8.5 Conclusion -- References -- Further reading -- 9 Chemical methods for the treatment of e-waste -- 9.1 Introduction -- 9.2 Identification of e-waste -- 9.3 Effects on air -- 9.3.1 Effects on soil -- 9.3.2 Effects on water -- 9.3.3 Effects on human health -- 9.4 Polycyclic aromatic hydrocarbons -- 9.5 Dioxin and furan-related health risks -- 9.6 Lead as a health deterrent on exposure -- 9.7 Beryllium exposure and its health damages -- 9.8 Cadmium as potent health deterrent -- 9.9 Exposure to mercury and its health damages -- 9.10 Flame retardants' health damages -- 9.11 Land filling and its hazards -- 9.12 Hazards caused by landfilling -- 9.13 Incineration and its hazards -- 9.14 Damages and hazards of incineration process involve the following -- 9.15 Recycling of e-waste -- 9.16 Structure of printed circuit board -- 9.17 Techniques of chemical recycling -- 9.18 Chemical treatment by metallurgical processes -- 9.19 Chemical recycling techniques -- 9.20 Electrochemical process -- 9.21 Recycling by thermal methods -- 9.22 Pyrolysis process -- 9.23 Thermal treatment -- 9.24 Recycling of LCD panels to procure indium -- 9.25 Production of clean fuel from recycling e-waste -- 9.26 Conclusion -- References -- 10 E-waste management using different cost-effective, eco-friendly biological techniques: an overview -- 10.1 Introduction. , 10.1.1 Overview of e-waste -- 10.1.2 E-waste trade and mechanism -- 10.1.3 E-waste flow model -- 10.1.4 Stakeholders -- 10.1.4.1 Manufacturers and retailers -- 10.1.4.2 Individual households -- 10.1.4.3 Business/government sector -- 10.1.4.4 Traders/scrap dealers/dissemblers/dismantlers -- 10.1.4.5 Recyclers -- 10.2 Statistics and e-waste management system in Asian countries -- 10.3 E-waste management system in India -- 10.4 Health hazards associated with e-waste -- 10.5 Consumer's awareness -- 10.6 Economic benefit -- 10.7 E-waste management -- 10.8 Micro-remediation of e-waste -- 10.8.1 Bioleaching -- 10.8.2 Biosorption -- 10.8.3 Bioaccumulation -- 10.8.4 Microbial involvement in bioaccumulation process -- 10.8.5 Chemisorption of heavy metals by microorganism:  a method for the bioremediation of solutions -- 10.8.6 Biotransformation -- 10.8.7 Biomineralization -- 10.8.8 Microbially-enhanced chemisorption of metals -- 10.9 Recent trends in metal recovery methods from e-waste -- 10.10 Suggestion to control and manage e-waste in India -- 10.11 Ecological and environmental effects of e-wastes -- 10.11.1 Deleterious effects e-wastes on air -- 10.11.2 Deleterious effects of e-wastes on soil -- 10.11.3 Deleterious effects of e-wastes on water -- 10.12 Environmental and health issues -- 10.13 Recent research -- 10.14 Conclusion -- Annexure I -- Annexure II (https://cpcb.nic.in/e-waste-recyclers-dismantler) -- Annexure III Description of UNU categories (Baldé, C. P., Wang, F., Kuehr, R., Huisman, J. 2015, The global e-waste monitor... -- References -- 11 Life cycle assessment of e-waste management: current practices and future research agenda towards sustainability -- 11.1 Introduction -- 11.2 Aim and motivation of the study -- 11.3 Overview on life cycle assessment and its development -- 11.3.1 Life cycle assessment as environmental assessment tool. , 11.3.2 Role of life cycle impact assessment methodologies and its recent development.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...