GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Water-Pollution-Health aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (614 pages)
    Edition: 1st ed.
    ISBN: 9780128240595
    DDC: 363.7394
    Language: English
    Note: Front Cover -- Contamination of Water -- Copyright Page -- Contents -- List of contributors -- Preface -- A. Water contamination -- 1 Contamination of water resources in the mining region -- 1.1 Introduction -- 1.2 Sources of contamination -- 1.2.1 Mining area -- 1.2.1.1 Active and abandoned mines -- 1.2.1.2 Metallic and nonmetallic -- 1.2.1.3 Surface and underground mines -- 1.2.2 Mine waste -- 1.2.2.1 Tailings -- 1.2.2.2 Waste rocks -- 1.2.2.3 Slag -- 1.2.3 Mine water -- 1.3 Pathways of contamination -- 1.3.1 Contamination of surface water resources -- 1.3.2 Contamination of groundwater resources -- 1.4 Impacts of mines on vegetation and humans -- 1.4.1 Vegetation -- 1.4.2 Human health -- 1.5 Remediation methods -- 1.6 Summary -- References -- 2 Contamination of water resources in and around saline lakes -- 2.1 Introduction -- 2.2 Types of saline lakes around the world -- 2.3 Contamination of saline lakes -- 2.3.1 Aral Sea -- 2.3.2 Great Salt Lake -- 2.3.3 Lake Urmia -- 2.3.4 Sambhar Lake -- 2.3.5 Dead Sea -- 2.4 Management and conservation of lakes -- 2.5 Conclusion -- References -- 3 Contamination of groundwater by fly ash heavy metals at landfill sites -- 3.1 Introduction -- 3.2 Fly ash disposal -- 3.3 Wet disposal method -- 3.4 Dry disposal method -- 3.5 Impact of fly ash disposal on groundwater -- 3.6 Status of groundwater contamination -- 3.7 Case study -- 3.7.1 Characterization of fly ash disposed of at landfill sites and groundwater contamination by fly ash heavy metals relea... -- 3.8 Fly ash: heavy metal contaminant -- 3.9 Material method -- 3.10 Results -- 3.10.1 Dry disposal system -- 3.10.1.1 Physio-chemical analysis of dyke ash -- 3.10.1.2 Instrumental analysis -- 3.10.1.2.1 Morphology of dyke ash (pre and postanalysis) -- 3.11 Particle size analysis by dynamic light scattering analyser (pre and postmonsoon analysis). , 3.12 Fourier transform infrared analysis of dyke ash (pre and postmonsoon) -- 3.13 Mineralogy of dyke ash by x-ray diffraction (pre and postanalysis) -- 3.13.1 Wet disposal system -- 3.13.1.1 Physio-chemical analysis -- 3.13.1.2 Instrumental analysis -- 3.13.1.2.1 Morphology of ash by scanning electron microscopy -- 3.14 Particle size analysis of ash by dynamic light scattering -- 3.15 Fourier transform infrared analysis of ash -- 3.16 Mineralogy of ash by x-ray diffraction -- 3.17 Seasonal concentration of heavy metal in fly ash -- 3.18 Discussion -- 3.18.1 Disposal system of fly ash -- 3.19 Dry disposal system of fly ash -- 3.20 Wet disposal system of fly ash -- 3.21 Heavy metal analysis of pre and postmonsoon disposed ash -- 3.22 Conclusion -- References -- 4 Current scenario of heavy metal contamination in water -- 4.1 Introduction: water contamination and measure concerns -- 4.2 Types of water pollutants -- 4.2.1 Organic pollutants -- 4.2.2 Inorganic pollutants -- 4.2.3 Biological pollutants -- 4.2.4 Thermal pollutants -- 4.2.5 Radioactive pollutants -- 4.2.6 Heavy metal contamination in water -- 4.3 Standard permissible limits and sources of heavy metal pollution in water -- 4.3.1 Standard permissible limits for heavy metals in water -- 4.3.2 Sources of heavy metal contamination in water -- 4.3.2.1 Natural source -- 4.3.2.2 Anthropogenic sources -- 4.4 Heavy metal contamination in water sources: environmental and health hazards -- 4.5 Heavy metal decontamination: remediation methods and techniques -- 4.5.1 Oxidation/precipitation -- 4.5.2 Ion exchange -- 4.5.3 Electrokinetic process -- 4.5.4 Membrane filtration/reverse osmosis -- 4.5.5 Bioremediation -- 4.5.6 Adsorption method -- 4.5.6.1 Powder method -- 4.5.6.2 Template method -- 4.6 Concluding remarks and future aspects -- References. , 5 Health impacts due to fluoride contamination in water: current scenario -- 5.1 Introduction -- 5.2 Fluoride chemistry -- 5.3 Sources of fluoride in the environment -- 5.3.1 Minerals/sediment based sources -- 5.3.2 Geothermal sources -- 5.3.3 Anthropogenic resources -- 5.4 Factors responsible for the contribution of fluoride ions to groundwater resources -- 5.5 Fluoride availability in groundwater/drinking water -- 5.6 Bioavailability of fluoride -- 5.7 Effects on human health due to fluoride -- 5.8 Human health risk assessment due to fluoride -- 5.8.1 Health risk assessment tool -- 5.8.2 Categorization of risk for assessment -- 5.8.2.1 Carcinogenic risks -- 5.8.2.2 Noncarcinogenic risks -- 5.8.3 Assessment of risk involved -- 5.8.3.1 Carcinogenic risk assessment and lifelong probability -- 5.8.3.2 Assessment of noncarcinogenic risk -- 5.9 Remedial techniques to remove fluoride from water/waste water -- 5.9.1 Chemical precipitation/coagulation -- 5.9.2 Phytoremediation technique -- 5.9.3 Membrane-based separation process -- 5.9.3.1 Reverse osmosis -- 5.9.3.2 Nanofiltration -- 5.9.3.3 Electrodialysis -- 5.9.4 Ion-exchange method -- 5.9.5 Adsorption -- 5.10 Consumer behavior and use of water -- 5.11 Recommendations -- References -- 6 Contamination of water resources in industrial zones -- 6.1 Introduction -- 6.1.1 Water pollution and pollutants -- 6.1.2 Water scarcity and quality -- 6.1.3 Exposure of industrial contaminants into the water -- 6.2 Types of contaminants present in water resources -- 6.2.1 Organic contaminants -- 6.2.2 Thermal pollution -- 6.2.3 Heavy metals -- 6.2.4 Biological -- 6.3 Negative impacts of contaminants on human health and ecotoxicity -- 6.4 Remediation technology -- 6.4.1 Water remediation by physical and chemical technologies -- 6.4.1.1 Physical method -- 6.4.1.1.1 Pump and treat technology. , 6.4.1.1.2 Air sparging technology -- 6.4.1.1.3 Adsorption technology -- 6.4.1.1.4 Distillation technology -- 6.4.1.2 Chemical treatment technologies -- 6.4.1.2.1 Chemical precipitation method -- 6.4.1.2.2 Ion-exchange method -- 6.4.1.2.3 Carbon adsorption method -- 6.4.1.2.4 Chemical oxidation method -- 6.4.1.2.5 Surfactant increased recovery method -- 6.4.1.2.6 Permeable active barrier method -- 6.4.2 Water remediation by bioremediation and phytoremediation technologies -- 6.4.2.1 Bioremediation -- 6.4.2.2 In-situ bioremediation approach -- 6.4.2.3 Ex-situ bioremediation approach -- 6.4.2.4 Methods of bioremediation -- 6.4.2.4.1 Bioventing method -- 6.4.2.4.2 Landfarming method -- 6.4.2.4.3 Bioreactor method -- 6.4.2.4.4 Bioaugmentation method -- 6.4.2.4.5 Rhizofiltration method -- 6.4.2.4.6 Biostimulation method -- 6.4.2.5 Phytoremediation -- 6.4.2.6 Types of phytoremediation -- 6.4.2.6.1 Phytostabilization approach -- 6.4.2.6.2 Phytovolatilization approach -- 6.4.2.6.3 Phytoextraction or phytoaccumulation approach -- 6.4.2.6.4 Phytofiltration approach -- 6.4.2.6.5 Phytodegradation or phytotransformation approach -- 6.5 Conclusion -- References -- 7 Contamination of groundwater resources by pesticides -- 7.1 Introduction -- 7.2 Historical perspectives of pesticide pollution -- 7.3 The fate of pesticides in the environment -- 7.4 Initial deposition and fate of pesticides in aquatic ecosystems -- 7.5 Impacts of pesticides -- 7.6 Management practices and remedies against pesticide pollution in groundwater -- 7.7 Conclusion and future direction -- References -- 8 Current scenario of pesticide contamination in water -- 8.1 Introduction -- 8.2 Pesticides contamination in water resources -- 8.3 Emerging pesticides as water pollutants -- 8.4 Source of pesticides release in water bodies -- 8.5 Ecological and health risk assessment. , 8.6 Conclusion and future outlook -- Acknowledgement -- References -- B. Health risk assessment -- 9 Contamination of water resources with potentially toxic elements and human health risk assessment: Part 1 -- 9.1 Introduction -- 9.2 Water-a boon to mankind -- 9.2.1 Types of water available -- 9.2.2 Water quality, scarcity, and its importance -- 9.2.3 Water contaminants and its types: conventional and emerging -- 9.2.3.1 Conventional contaminants -- 9.2.3.1.1 Inorganic substance contaminants -- 9.2.3.1.2 Organic contaminants -- 9.2.3.1.3 Biological contaminants -- 9.2.3.1.4 Radiological contaminants -- 9.2.3.2 Emerging water pollutants -- 9.2.4 Different route, causes and sources -- 9.3 Impure or heavy metal contaminated drinking water -- 9.3.1 Mechanism of heavy metal toxicity -- 9.3.1.1 Arsenic toxicity -- 9.3.1.2 Cadmium toxicity -- 9.3.1.3 Chromium toxicity -- 9.3.1.4 Lead toxicity -- 9.3.1.5 Mercury toxicity -- 9.3.2 Adverse effect of heavy metals on human health -- 9.3.3 Heavy metal risk assessment: harms versus benefits -- 9.4 Remediation and mitigation of heavy metals -- 9.4.1 Microbial remediation -- 9.4.2 Bio-sorption technique -- 9.4.3 Chromatographic technique -- 9.4.4 Nanoadsorbent technique -- 9.5 Biotechnological approaches for the detection of contaminants in freshwater -- 9.5.1 Types of biosensors -- 9.5.1.1 Antibody-based biosensors -- 9.5.1.2 Enzyme-based biosensors -- 9.5.1.3 Protein-based biosensors -- 9.5.1.4 Whole cell-based biosensors -- 9.6 Miscellaneous -- 9.7 Conclusion -- References -- 10 Contamination of water resources with potentially toxic elements and human health risk assessment: Part 2 -- 10.1 Introduction -- 10.2 Natural distribution, industrial production, and applications of toxic heavy metals -- 10.2.1 Mercury -- 10.2.2 Arsenic -- 10.2.3 Lead -- 10.2.4 Cadmium -- 10.2.5 Chromium. , 10.3 Heavy metals contamination in water resources.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...