GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Recycling (Waste, etc.)-Economic aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (480 pages)
    Edition: 1st ed.
    ISBN: 9780323958721
    DDC: 363.728
    Language: English
    Note: Front Cover -- Valorization of Wastes for Sustainable Development -- Copyright Page -- Contents -- List of contributors -- About the editors -- Preface -- 1 Overview - Current scenarios and challenges -- 1 Challenges and opportunities associated with different forms of waste resources utilizations -- 1.1 Introduction -- 1.2 Classification of waste -- 1.2.1 Glass waste -- 1.2.2 Paper waste -- 1.2.3 Construction waste -- 1.2.4 Industrial and hazardous waste -- 1.2.5 Agricultural waste -- 1.2.6 Medical and municipal solid waste -- 1.2.7 E-waste -- 1.3 Challenges in waste management -- 1.3.1 Environmental, health, and socioeconomic issues -- 1.4 Current status in waste management -- 1.4.1 Waste management in developed, developing, and low-income countries -- 1.5 Problems encountered in waste handling -- 1.5.1 Collection, segregation, transportation, and storage of waste -- 1.5.2 Recycling and resource recovery -- 1.5.3 Research-based methods -- 1.6 Future scope -- 1.6.1 Circular economy -- 1.6.2 Internet of things -- 1.6.3 Green productivity practices -- 1.6.4 Biochar in waste management -- 1.6.5 Waste as a resource -- 1.6.6 Sustainable waste management -- 1.6.7 Public engagement in waste reduction and recycling policies -- 1.7 Conclusion and discussion -- References -- 2 Mitigation of environment crisis: conversion of organic plant waste to valuable products -- 2.1 Introduction -- 2.2 Sources of organic wastes -- 2.2.1 Fruit and vegetable waste -- 2.2.2 Wood waste -- 2.2.3 Agricultural waste -- 2.3 Various treatments employed for utilizing organic wastes -- 2.3.1 Vermicompost -- 2.3.2 Fermentation -- 2.3.3 Thermal treatment -- 2.3.4 Hydrothermal treatment -- 2.3.5 Enzymatic process -- 2.4 Importance of converting waste into valuable products -- 2.5 Valorization of organic wastes by microbial route -- 2.5.1 Biodiesel production. , 2.5.1.1 Waste oils as feedstock -- 2.5.1.2 Other organic wastes as feedstock -- 2.5.2 Bioelectricity -- 2.5.3 Biohydrogen -- 2.5.4 Organic acid -- 2.5.5 Enzymes -- 2.5.6 Feed and others -- 2.6 Valorization of cashew apple wastes -- 2.6.1 Emerging applications of cashew apple -- 2.6.2 Enzyme production from bagasse of cashew apple -- 2.6.2.1 Tannase -- 2.6.2.2 Pectinase -- 2.6.2.3 Cellulase -- 2.6.3 Wine and bioethanol production -- 2.6.4 Feni production improvement for augmenting cashew farmers' income-a brief case study -- 2.7 Conclusion -- References -- 2 Waste valorization for renewable fuel -- 3 Conversion of waste tires into renewable fuel -- 3.1 Introduction -- 3.2 Waste tires -- 3.3 Traditional waste tire management -- 3.4 Sustainable waste tires management -- 3.5 Waste tires to renewable fuel via thermochemical conversion -- 3.6 Pyrolysis -- 3.7 Gasification -- 3.8 Hydrothermal liquefaction -- 3.9 Conclusion -- References -- 4 Mammals' dung and urine for fuel production -- 4.1 Introduction -- 4.2 Sources of animal manure -- 4.2.1 Farm animal dung compositions -- 4.2.2 Human Fecal composition -- 4.2.3 Essential manure properties in energy conversion -- 4.3 Methodologies used in biofuel production from animal manure -- 4.3.1 Thermochemical methods -- 4.3.1.1 Incineration -- 4.3.1.2 Pyrolysis -- 4.3.1.3 Gasification -- 4.3.1.4 Hydrothermal carbonization -- 4.3.2 Biochemical methods -- 4.3.2.1 Anaerobic digesters -- 4.3.2.2 Fermentation -- 4.4 Various types of fuel production from animal dung and urine as feedstock -- 4.4.1 Biogas formation from anaerobic digestion of livestock waste -- 4.4.2 Bioethanol production -- 4.4.3 Biodiesel production -- 4.4.4 Microbial electrochemical systems (MES) -- 4.4.5 Biohydrogen production -- 4.4.6 Bio-oil, biochar, and syngas -- 4.4.7 Novel source of fuel -- 4.5 Challenges for fuel production. , 4.6 Future perspectives and conclusion -- References -- 5 Biofuel production from lignocellulosic biomass waste -- 5.1 Introduction -- 5.2 Biomass to biofuel conversion techniques -- 5.2.1 Pyrolysis -- 5.2.2 Liquefaction -- 5.2.2.1 Torrefaction -- 5.2.3 Gasification -- 5.2.4 Biochemical fermentative pathway -- 5.3 Types of biofuels -- 5.3.1 Solid biofuel -- 5.3.1.1 Torrified products -- 5.3.2 Liquid fuels -- 5.3.2.1 Biodiesel -- 5.3.2.2 Bioethanol -- 5.3.2.3 Biomass to liquid -- 5.3.3 Gaseous fuels -- 5.3.3.1 Syngas -- 5.3.3.2 Biohydrogen -- 5.3.3.3 Challenges in biofuel production -- References -- 6 A holistic valorization of food waste for sustainable biofuel production -- 6.1 Introduction -- 6.2 Valorization of food waste to biofuels -- 6.3 Food waste to bioethanol -- 6.4 Food waste to biodiesel -- 6.5 Biohydrogen -- 6.6 Bio-oil -- 6.7 Other sources of bioenergy -- 6.8 Future scope and challenges -- 6.9 Conclusion and remarks -- References -- 7 Biofuel scale-up from waste source and strategies for cost optimization -- 7.1 Introduction -- 7.2 Biomass conversion routes-thermochemical conversion process -- 7.2.1 Biomass-to-gas processes -- 7.2.2 Biomass-to-liquid processes -- 7.2.3 Biomass-to-solid conversion processes -- 7.3 Biomass conversion routes-biological conversion process -- 7.3.1 Anaerobic digestion -- 7.3.2 Syngas fermentation -- 7.4 Strategies for cost optimization of biofuel -- 7.5 Conclusion -- References -- 8 Biobutanol production from agricultural wastes -- 8.1 Introduction -- 8.1.1 Biobutanol -- 8.1.2 Bioreactors -- 8.1.3 Biobutanol-producing bacteria -- 8.1.4 Biostimulation -- 8.1.5 Potential feedstocks for biobutanol production -- 8.2 Micronutrients effects on biobutanol production -- 8.3 Methodological perspective -- 8.3.1 Experimental methodology -- 8.3.1.1 Treatment of agricultural wastes. , 8.3.1.2 Enzymatic hydrolysis and fermentation -- 8.3.2 Measurements -- 8.3.2.1 Micronutrients size measurement -- 8.3.2.2 Further measurements -- 8.3.3 Analytical methods -- 8.3.3.1 Elemental analysis of wastes -- 8.3.3.2 Wastes characterization -- 8.3.3.3 Biobutanol analysis -- 8.3.4 Extraction and purification -- 8.3.5 Calculations -- 8.3.5.1 Enzymatic saccharification rate -- 8.3.5.2 Acetone-butanol-ethanol conversion rate -- 8.3.5.3 Overall acetone-butanol-ethanol production rate -- 8.4 Strategies for enhancing biobutanol production -- 8.5 Techno-economic assessment of biobutanol -- 8.6 Summary and future prospective -- Declaration of competing interest -- References -- 9 Thermochemical treatment of wastes for power generation -- 9.1 Introduction -- 9.2 Fuel properties and process description -- 9.2.1 Fuel properties -- 9.2.2 Incineration -- 9.2.3 Gasification -- 9.2.4 Advanced technologies -- 9.2.4.1 Plasma gasification -- 9.2.4.2 Chemical looping combustion -- 9.2.4.3 Chemical looping reforming -- 9.2.4.4 Chemical looping gasification -- 9.3 Pollutant formation and other operational difficulties related to incineration and gasification -- 9.3.1 Pollutant formation during postcombustion -- 9.3.1.1 Formation mechanism of dioxins -- 9.3.1.2 Fly/bottom ash -- 9.3.2 Pollutant formation during precombustion -- 9.3.3 Operational and other difficulties -- 9.4 Power plant simulation studies based on waste feedstock -- 9.4.1 Power generating systems -- 9.4.2 Incineration and gasification-based power plants -- 9.4.3 Plasma gasification-based power plants -- 9.4.4 Chemical looping technology-based power plants -- 9.5 Real-scale industries -- 9.6 Conclusions and future scope -- References -- 3 Other valorizations of organic waste and non-organic waste -- 10 Marine waste for nutraceutical and cosmeceutical production -- 10.1 Introduction. , 10.2 Current trend of marine waste valorizations -- 10.3 Functional polysaccharides from marine waste -- 10.3.1 Emulsifier in nutraceutical application -- 10.3.2 Emulsifier in cosmeceutical application -- 10.3.3 Gelling agent in nutraceutical application -- 10.3.4 Gelling agent in cosmeceutical application -- 10.4 Functional protein and bioactive peptides from marine waste -- 10.4.1 Collagen, gelatin, and peptide -- 10.5 Sustainable extraction of bioactive compounds from marine waste -- 10.5.1 A sustainable extraction concept -- 10.5.1.1 Harvesting -- 10.5.1.2 Pretreatment -- 10.5.2 Extraction techniques for bioactive recovery from marine waste materials -- 10.5.2.1 Supercritical fluid extraction -- 10.5.2.2 Microwave-assisted extraction -- 10.5.2.3 Ultrasonic-assisted extraction -- 10.5.2.4 Pulsed electric field -- 10.6 Purification process -- 10.6.1 Membrane filtration -- 10.6.2 Gel filtration chromatography -- 10.6.3 Ion-exchange chromatography -- 10.6.4 High-performance liquid chromatography -- 10.6.5 Techno-economic evaluation -- 10.7 Marine waste for food and nutraceutical industries -- 10.8 Marine waste for cosmeceutical industries -- 10.9 Conclusion -- Acknowledgments -- References -- 11 Algae cultivation in industrial effluents for carbon dioxide sequestration and biofuel production -- 11.1 Introduction -- 11.2 Carbon sequestration by microalgae -- 11.2.1 Factors affecting CO2 sequestration by microalgae -- 11.2.1.1 Concentration of carbon dioxide -- 11.2.1.2 Temperature -- 11.2.1.3 pH -- 11.2.1.4 Microalgal species -- 11.3 Microalgae cultivation in industrial effluents -- 11.3.1 Industrial effluents as microalgae growth medium -- 11.3.1.1 Raw industrial effluent -- 11.3.1.2 Nutrient enrichment in industrial effluent -- 11.3.1.3 Pretreated industrial effluent -- 11.3.2 Industrial wastewater treatment. , 11.3.2.1 Nutrient removal in industrial wastewater.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (313 pages)
    Edition: 1st ed.
    ISBN: 9789811949371
    DDC: 363.7
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier,
    Keywords: Climatic changes. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (444 pages)
    Edition: 1st ed.
    ISBN: 9780128230978
    DDC: 363.738/74
    Language: English
    Note: Front Cover -- Global Climate Change -- Global Climate Change -- Copyright -- Contents -- Contributors -- Biographies -- 1 - Climate change and existential threats -- 1. Introduction -- 2. The existential threats -- 3. The rise in temperature and global warming -- 4. Melting of glaciers and polar icecaps -- 5. Rise in sea level, sea shape, and sea composition -- 6. Hazards of climate change -- 7. Forest fires -- 8. Heat waves -- 9. Drought -- 10. Floods -- 11. Cyclones, hurricanes, and typhoons -- 12. Loss of biodiversity and impact on flora and fauna -- 13. Health effects -- 14. Food security -- 15. Climate refugees -- 16. Conclusion -- References -- 2 - Impact of climate change on biodiversity and shift in major biomes -- 1. Introduction -- 2. Effects of climate change on biodiversity -- 3. Changes in the recurring life cycle events -- 4. Climatic factors -- 5. Biological responses and ecosystem health -- 6. Buffer and porch effects -- 7. Range shifts -- 8. Extinction risks -- 9. Summary and conclusion -- References -- Further reading -- 3 - Climate-resilient agriculture: enhance resilience toward climate change -- 1. Introduction -- 1.1 Major causes for climate change -- 1.1.1 The natural factors causing climate change -- 1.1.2 Anthropogenic activities -- 1.2 Pros of climate change -- 1.3 Cons of climate change -- 2. Climate-resilient agriculture -- 3. Major programs for climate-resilient agriculture -- 3.1 NICRA: National Innovations on Climate Resilient Agriculture -- 3.2 Objectives of National Innovations on Climate Resilient Agriculture -- 3.3 Village Climate Risk Management Committee -- 4. Smart practices and technologies for climate-resilient agriculture -- 4.1 Conservation of natural resources -- 4.2 Conservation of soil moisture by mulching -- 4.2.1 Benefit of mulching -- 4.3 Conservation agriculture for sustainable land use. , 4.4 Artificial recharging for enhancement of groundwater -- 4.5 Community approach for soil and water conservation -- 4.6 Sustainable crop production under climate change scenario -- 4.6.1 Selection of appropriate crop varieties -- 4.6.2 System of Rice Intensification -- 4.6.3 Aerobic rice cultivation -- 4.6.4 Intensive mixed farming system -- 4.6.5 Soil enrichment using organic manure/amendments and biofertilizers -- 4.6.6 Livestock and fisheries -- 4.6.6.1 Fodder production -- 4.6.6.2 Aquaculture and coping measures -- 5. Institutional interventions -- 5.1 Preserving the genetic diversity -- 5.2 Role of fodder bank in improving the quality of fodder -- 5.3 Custom hiring centers for increasing farm mechanization -- 5.3.1 Benefits from custom hiring centers -- 5.4 Weather Based Crop Insurance -- 6. Village-level weather forecasting -- 7. Conclusion -- References -- 4 - Influence of anthropocene climate change on biodiversity loss in different ecosystems -- 1. Introduction -- 2. Drivers of climate change -- 3. Climate change-induced species response -- 4. Biodiversity loss in terrestrial environment -- 4.1 Montane and subalpines ecosystems -- 4.2 Dryland ecosystems -- 5. Biodiversity loss in aquatic environment -- 5.1 Marine and coral reef ecosystems -- 5.2 Freshwater and wetland ecosystems -- 6. Conclusions -- References -- 5 - Link between air pollution and global climate change -- 1. Air pollution -- 1.1 Air quality standards -- 1.2 Air quality index -- 2. Sources of air pollution -- 2.1 Classification of major air pollution sources -- 2.2 Types of pollutants -- 3. Greenhouse gases -- 3.1 Global warming potential -- 3.2 Residence time -- 4. Greenhouse gases, global warming, and global climate change -- 4.1 Radiative forcing -- 4.2 Net radiative forcing -- 5. Nitrogen oxide emission an indirect greenhouse gas -- 6. Parameters affecting air pollution. , 7. Coupling of air pollution with global warming process -- 8. Design of large-scale facility for effective global warming system -- 9. Current applications and future aspects -- 9.1 Carbon capture and storage/utilization technologies -- 9.2 Concluding remarks -- References -- 6 - Dimensions of climate change and its consequences on ecosystem functioning -- 1. Introduction -- 2. Ozone depletion, UV-B penetration, and their impacts on different ecosystems -- 2.1 Stratospheric ozone depletion -- 2.2 Impacts of ozone depletion on regional and global basis -- 2.3 Impacts of O3 depletion on the regional rainfall and water availability -- 2.4 Impacts of O3 depletion-induced changes in surface temperature on terrestrial ecosystem -- 3. UV radiation -- 3.1 Global climate change due to ozone depletion and UV-B penetration -- 3.2 Impacts of UV-B on terrestrial ecosystem -- 3.3 Impacts of ozone depletion and UV radiation on ecosystem functioning -- 3.4 Impacts of O3 depletion and UV-B penetration on aquatic ecosystem -- 3.5 Climate change-induced alteration in UV radiation exposure of organisms -- 4. Global warming -- 4.1 Impact of global warming on terrestrial ecosystems -- 4.2 Impact of global warming on aquatic ecosystems -- 4.3 Sea level rise and glacier melting -- 5. Effects of climate change on nutrient pollution -- 6. Effects of climate change on thermal pollution -- 7. Increased risks of climate-related disasters -- 7.1 Climate change aggravates the degradation of ecosystem -- 7.2 Proper ecosystem management is essential to reduce the risks of weather events -- 8. Crisis of natural resources -- 8.1 Land degradation -- 8.2 Water crisis -- 8.3 Loss of biodiversity -- 8.4 Marine resources -- 9. National and international meets/conventions on climate change impact and mitigation efforts -- 10. Conclusions -- Acknowledgments -- References. , 7 - Climate change: Impact on agricultural production and sustainable mitigation -- 1. Introduction -- 2. Global climate change -- 3. Impact of climate change on the agricultural sectors -- 3.1 Climate change impact on Indian agriculture -- 3.1.1 Impact on the agricultural ecosystem -- 3.1.2 Impact on the agricultural production -- 3.1.2.1 Rice -- 3.1.2.2 Wheat -- 3.1.2.3 Maize -- 3.1.2.4 Barley -- 3.1.2.5 Pulses -- 3.1.3 Impact on the insect pest and disease development -- 3.1.4 Impact on the use of agrochemicals -- 3.1.5 Impacts on the agricultural economy -- 4. Mitigation and adaptation strategies for the agriculture -- 4.1 Mitigation strategies -- 4.2 Adaptation strategies -- 4.2.1 Soil management practices -- 4.2.2 Shifting the location of seed production industries -- 4.2.3 Shifting crop sowing date -- 4.2.4 Plant breeding and focus on developed variety -- 5. Policy implications -- 6. Conclusion and future prospective -- References -- 8 - Geological records of climate change -- 1. Introduction -- 2. Geological evidence of climate change -- 2.1 Oceanic sediments -- 2.2 Oxygen isotope ratio -- 2.3 Tree rings -- 2.4 Fossils pollen -- 2.5 Coral reefs -- 3. Conclusions -- References -- 9 - Global climate change: the loop between cause and impact -- 1. Introduction -- 2. Natural causes of climate change -- 2.1 Orbital variations and climate change -- 2.1.1 Orbital eccentricity -- 2.1.2 Earth's obliquity -- 2.1.3 Precession -- 2.2 Solar variability and climate change -- 2.2.1 Sunspots and temperature -- 2.2.2 Sunspots and drought -- 2.3 Plate tectonics and climate change -- 2.4 Albedo and climate change -- 2.5 El Nino-Southern oscillation (ENSO) cycle -- 2.6 Volcanic activity and climate change -- 3. Anthropogenic cause -- 3.1 Greenhouse gases -- 3.1.1 Carbon dioxide (CO2) -- 3.1.2 Methane -- 3.1.3 Nitrous oxide (N2O). , 3.1.4 Chlorofluorocarbons (CFCs) -- 3.1.5 Water vapor (H2O) and aerosol -- 4. Effect of climate change -- 4.1 Change in sea level -- 4.2 Ocean acidification -- 4.3 Ozone depletion -- 4.4 Melting of polar ice and glaciers -- 4.5 Enhanced extreme weather events -- 4.6 Food security -- 5. Conclusions -- References -- 10 - Development of abiotic stress-tolerant mustard genotype through induced mutagenesis -- 1. Introduction -- 2. Indicator for different stresses -- References -- 11 - Impact of tropospheric ozone pollution on wheat production in Southeast Asia: an update -- 1. Introduction -- 2. Modern bread wheat: the second most important cash crop -- 2.1 Origin and evolution of modern wheat -- 2.2 Wheat as a major player in green revolution -- 3. Tropospheric ozone: the most toxic secondary air pollutant and climate factor -- 3.1 Good ozone and bad ozone -- 3.2 The genesis of ozone -- 3.3 Absorption in plants and general consequences -- 3.4 Consequences -- 4. Wheat production under ozone pollution: the world scenario -- 5. Case studies: Southeast Asia -- 5.1 Pakistan -- 5.1.1 India -- 5.2 Bangladesh -- 5.3 China -- Acknowledgments -- References -- 12 - Past and present events of climate change: natural versus anthropogenic causes -- 1. Introduction -- 2. Evidence of climate change -- 2.1 Loss of polar ice sheets and mountain glaciers -- 2.2 Ocean acidification -- 2.2.1 Reduced calcification -- 2.3 Change in average surface temperature and precipitation pattern -- 2.4 Sea level rise -- 3. Causes of climate change: natural versus anthropogenic -- 3.1 Natural causes of climate change -- 3.2 Anthropogenic causes of climate change -- 4. Past climatic changes -- 5. Recent trends in climate change -- 5.1 Sea level rise -- 5.2 Shrinking ice -- 5.3 Ocean heat and acidity -- 5.4 Extreme events -- 5.5 Wildfires -- 6. Conclusion -- References. , 13 - Radioecology: dissecting complexities of radionuclide transfer under climate change.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Biotechnology. ; Bioremediation. ; Microbial ecology.
    Description / Table of Contents: 1 Environmental pollutants: metal(loid)s and radionuclides -- 2 Environmental pollutants: organic and emerging contaminants -- 3 Biosorption, Bioaccumulation And Biodegradation – A Sustainable Approach For Management Of Environmental Contaminants -- 4 Bioremediation technologies for the treatment of water contaminated by organic and inorganic contaminants -- 5 Biological treatment of volatile organic compounds (VOCs) and odorous compounds -- 6 Biological treatment of endocrine-disrupting chemicals (EDCs) -- 7 Biological Treatment Of Pharmaceuticals And Personal Care Products (Ppcps) -- 8 Genetic engineering strategies and degradation of pollutants using genetically engineered microbes (GEMs) -- 9 Biogenic synthesis of nanoparticles and its application in wastewater treatment -- 10 BioTechnological approach for treatment of sludge from municipal and industrial wastewater treatment plant -- 11 Microwave Assisted Chemically Modified Biochar For The Sequestration Of Emerging Contaminants.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(X, 310 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9789811949371
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...