GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kirkels, Frédérique M S A; Ponton, Camilo; Galy, Valier; West, A Joshua; Feakins, Sarah J; Peterse, Francien (2019): From Andes to Amazon: assessing branched tetraether lipids as tracers for soil Organic Carbon in the Madre de Dios River system. Journal of Geophysical Research: Biogeosciences, https://doi.org/10.1029/2019JG005270
    Publication Date: 2023-01-13
    Description: Geochemical data, brGDGT fractions and calculated indices for soils and river samples during the wet and dry season in the Madre de Dios catchment, Peru.
    Keywords: altitudinal transect; Amazon headwaters; Branched and isoprenoid tetraether index; Branched GDGTs; Branched glycerol dialkyl glycerol tetraether, Ia, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ib, fractional abundance; Branched glycerol dialkyl glycerol tetraether, Ic, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIc', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIa', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIb', fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc, fractional abundance; Branched glycerol dialkyl glycerol tetraether, IIIc', fractional abundance; Calculated from linear regression; Carbon, organic, total; Cyclization ratio of branched tetraethers; Degree of cyclisation; derived from pH; ELEVATION; in-situ production; Isomer ratio; LATITUDE; LONGITUDE; Madre_de_Dios_River_System; Madre de Dios River; MULT; Multiple investigations; Peru; pH, soil; Sample comment; Sample ID; soil inputs; Specific surface area; Sum branched glycerol dialkyl glycerol tetraether, per unit sediment mass; Suspended sediment concentration; Temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 2233 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-30
    Keywords: Ammonia; black carbon; Black carbon, dissolved; Cadmium; Carbon, organic, dissolved; Chlorophyll a; Cobalt; Copper; Date/Time of event; DEPTH, water; Event label; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Nitrate and Nitrite; Phosphate; Replicates; Salinity; Santa Barbara Basin; Santa Barbara Basin, California, United States of America; SBB_SW-1; SBB_SW-2; SBB_SW-3; SBB_SW-4; SBB_SW-5; SBB_SW-6; SBB_SW-7; SBB_SW-8; Silicate; SW-1; SW-2; SW-3; SW-4; SW-5; SW-6; SW-7; SW-8; Temperature, water; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; δ13C, chlorophyll a; δ13C, chlorophyll a, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 164 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Keywords: black carbon; Black carbon, dissolved; Cadmium; Calculated; Carbon, organic, dissolved; Cobalt; Comment; Copper; Date/Time of event; Discharge; Event label; Height; Iron; Latitude of event; Lead; Longitude of event; Manganese; Nickel; Santa Barbara Basin; Thomas Fire; Time in hours; trace metals; Ventura River; Ventura River, California, United States of America; VR-1; VR-10; VR-11; VR-12; VR-13; VR-2; VR-3; VR-4; VR-5; VR-6; VR-7; VR-8; VR-9; wildfire; Zinc
    Type: Dataset
    Format: text/tab-separated-values, 287 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-07-11
    Description: Aerosol, seawater, and floodwater samples were taken during the 2017 California Thomas Fire and subsequent flash flood event. These samples were used to examine how fire-flood sequences affect metal and black carbon delivery to coastal waters, such as the Santa Barbara Basin (SBB). On day 11 of the Thomas Fire, aerosols sampled at sea level under a smoke plume over the SBB found high levels of PM2.5, levoglucosan, and black carbon (average: 49 μg/m^3, 1.05 μg/m^3, 14.93 μg/m^3, respectively) and both soluble and total aerosol metal concentrations were consistent with a forest fire signature. Metal, nutrient, and chlorophyll a concentrations in surface seawater (average: 2.42 nM Fe, 0.14 µM phosphate, and 0.44 µgChla/L) were similar to concentrations during non-fire conditions, thus we could not establish fire-related increases in the SBB surface waters. On days 37 to 40 of the fire, before, during, and after a flash flood in the Ventura River, dissolved organic carbon, dissolved black carbon, and dissolved metal concentrations were positively correlated with discharge. Our findings confirm that black carbon and metals were released by the Thomas Fire and transported by both atmospheric and fluvial pathways.
    Keywords: black carbon; Santa Barbara Basin; Thomas Fire; trace metals; Ventura River; wildfire
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-07-11
    Keywords: black carbon; Black carbon, aerosol; Cadmium; Cadmium, soluble; Cobalt; Cobalt, soluble; Copper; Copper, soluble; Date/time end; Date/time start; Iron; Iron, soluble; Lead; Lead, soluble; Levoglucosan; Manganese; Manganese, soluble; Manganese, total; Nickel; Nickel, soluble; Particulate matter, 〈 2.5 µm; Sample ID; Sample volume; Santa_Barbara_Basin_Aerosols; Santa Barbara Basin; Size fraction; Thomas Fire; trace metals; Ventura River; wildfire; Zinc; Zinc, soluble
    Type: Dataset
    Format: text/tab-separated-values, 383 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-28
    Description: Chemical weathering is an integral part of both the rock and carbon cycles and is being affected by changes in land use, particularly as a result of agricultural practices such as tilling, mineral fertilization, or liming to adjust soil pH. These human activities have already altered the chemical terrestrial cycles and land-ocean flux of major elements, although the extent remains difficult to quantify. When deployed on a grand scale, Enhanced Weathering (a form of mineral fertilization), the application of finely ground minerals over the land surface, could be used to remove CO2 from the atmosphere. The release of cations during the dissolution of such silicate minerals would convert dissolved CO2 to bicarbonate, increasing the alkalinity and pH of natural waters. Some products of mineral dissolution would precipitate in soils or taken up by ecosystems, but a significant portion would be transported to the coastal zone and the open ocean, where the increase in alkalinity would partially counteract “ocean acidification” associated with the current marked increase in atmospheric CO2. Other elements released during this mineral dissolution, like Si, P or K, could stimulate biological productivity, further helping to remove CO2 from the atmosphere. On land, the terrestrial carbon-pool would likely increase in response to Enhanced Weathering in areas where ecosystem growth rates are currently limited by one of the nutrients that would be released during mineral dissolution. In the ocean, the biological carbon pumps (which export organic matter and CaCO3 to the deep ocean) may be altered by the resulting influx of nutrients and alkalinity to the ocean. This review merges current interdisciplinary knowledge about Enhanced Weathering, the processes involved, and the applicability as well as some of the consequences and risks of applying the method.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 242 (2018): 64-81, doi:10.1016/j.gca.2018.09.007.
    Description: Tropical montane regions tend to have high rates of precipitation, biological production, erosion, and sediment export, which together move material off the landscape and toward sedimentary deposits downstream. Plant wax biomarkers can be used to investigate sourcing of organic matter and are often used as proxies to reconstruct past climate and environment in sedimentary deposits. To understand how plant waxes are sourced within a wet, tropical montane catchment, we measure the stable C and H isotope composition (δ13C and δD) of n-alkanes and n-alkanoic acids in soils along an elevation transect and from sediments within the Madre de Dios River network along the eastern flank of the Peruvian Andes, draining an area of 75,400 km2 and 6 km of elevation. Soils yield systematic trends in plant wax δ13C (+1.75 and +1.31‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively in the mineral horizon) and δD values (−10 and −12‰ km−1, respectively) across a 3.5 km elevation transect, which approximates trends previously reported from canopy leaves, though we find offsets between δ13C values in plants and soils. River suspended sediments generally follow soil isotopic gradients defined by catchment elevations (δ13C: +1.03 and +0.99‰ km−1 and δD: −10 to −7‰ km−1, for the C29n-alkanes and C30n-alkanoic acids respectively) in the wet season, with a lowering in the dry season that is less well-constrained. In a few river suspended sediments, petrogenic contributions and depth-sorting influence the n-alkane δ13C signal. Our dual isotope, dual compound class and seasonal sampling approach reveals no Andean-dominance in plant wax export, and instead that the sourcing of plant waxes in this very wet, forested catchment approximates that expected for spatial integration of the upstream catchment, thus with a lowland dominance on areal basis, guiding paleoenvironmental reconstructions in tropical montane regions. The dual isotope approach provides a cross-check on the altitudinal signals and can resolve ambiguity such as might be associated with vegetation change or aridity in paleoclimate records. Further, the altitude effect encoded within plant waxes presents a novel dual-isotope biomarker approach to paleoaltimetry.
    Description: This material is based upon work supported by the US National Science Foundation under Grant No. EAR-1227192 to A.J.W and S.J.F for the river work.
    Keywords: Plant wax ; Leaf wax ; Biomarker ; Hydrogen isotope ; Carbon isotope ; Andes ; Amazon ; Paleoaltimetry ; Source-to-sink
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Kirkels, F. M. S. A., Ponton, C., Galy, V., West, A. J., Feakins, S. J., & Peterse, F. From Andes to Amazon: assessing branched tetraether lipids as tracers for soil organic carbon in the Madre de Dios River system. Journal of Geophysical Research-Biogeosciences, 125(1), (2020): e2019JG005270, doi:10.1029/2019JG005270.
    Description: We investigate the implications of upstream processes and hydrological seasonality on the transfer of soil organic carbon (OC) from the Andes mountains to the Amazon lowlands by the Madre de Dios River (Peru), using branched glycerol dialkyl glycerol tetraether (brGDGT) lipids. The brGDGT signal in Andean soils (0.5 to 3.5 km elevation) reflects air temperature, with a lapse rate of −6.0 °C/km elevation (r 2 = 0.89, p 〈 0.001) and −5.6 °C/km elevation (r 2 = 0.89, p 〈 0.001) for organic and mineral horizons, respectively. The same compounds are present in river suspended particulate matter (SPM) with a lapse rate of −4.1 °C/km elevation (r 2 = 0.82, p 〈 0.001) during the wet season, where the offset in intercept between the temperature lapse rates for soils and SPM indicates upstream sourcing of brGDGTs. The lapse rate for SPM appears insensitive to an increasing relative contribution of 6‐methyl isomer brGDGTs produced within the river. River depth profiles show that brGDGTs are well mixed in the river and are not affected by hydrodynamic sorting. The brGDGTs accumulate relative to OC downstream, likely due to the transition of particulate OC to the dissolved phase and input of weathered soils toward the lowlands. The temperature‐altitude correlation of brGDGTs in Madre de Dios SPM contrasts with the Lower Amazon River, where the initial soil signature is altered by changes in seasonal in‐river production and variable provenance of brGDGTs. Our study indicates that brGDGTs in the Madre de Dios River system are initially soil derived and highlights their use to study OC sourcing in mountainous river systems.
    Description: The brGDGT analyses were supported by NWO‐Veni grant 863.13.016 to F.P. This material is based upon work supported by the US National Science Foundation under grant EAR‐1227192 to A. J. W. and S. J. F. for the river fieldwork and lipid purification. In Perú, we thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) and personnel of Manu and Tambopata National Parks for logistical assistance and permission to work in the protected areas. We thank the Explorers' Inn and the Pontifical Catholic University of Perú (PUCP), as well as the Amazon Conservation Association for the use of the Tambopata and Wayqecha Research Stations, respectively. For river fieldwork assistance, we thank M. Torres, A. Robles, and A. Cachuana. Soil samples were contributed by Andrew Nottingham and Patrick Meir. Logistical support was provided by Y. Malhi, J. Huaman, W. Huaraca Huasco, and other collaborators as part of the Andes Biodiversity and Ecosystems Research Group ABERG (www.andesresearch.org). We thank Dominika Kasjaniuk for technical support at Utrecht. Two anonymous reviewers have provided valuable comments that have helped to improve this manuscript. Geochemical and brGDGT data are available in the PANGAEA Data Repository (Kirkels et al., 2019) and can be accessed at https://doi.pangaea.de/10.1594/PANGAEA.906170
    Keywords: Bacterial membrane lipids (brGDGTs) ; Altitude‐temperature relations ; Amazon headwaters ; Soil‐river connectivity ; Riverine organic carbon transport, brGDGT proxy signal
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 121 (2016): 1316–1338, doi:10.1002/2016JG003323.
    Description: While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.
    Description: U.S. National Science Foundation Grant Number: 1227192; National Program on Key Basic Research Project Grant Number: 2015CB954201; National Natural Science Foundation of China Grant Number: 41422304; Natural Environment Research Council NE/F002149/1 Grant Number: FT110100457; European Union Marie Curie Fellowship Grant Number: FP7-2012-329360; NSF Grant Number: OCE-0934073
    Description: 2016-11-21
    Keywords: Lignin phenols ; Dissolved organic matter (DOM) ; Particulate organic matter (POM) ; Andes ; Amazon ; Depth profile
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 6420–6427, doi:10.1002/2014GL061328.
    Description: Rivers carry organic molecules derived from terrestrial vegetation to sedimentary deposits in lakes and oceans, storing information about past climate and erosion, as well as representing a component of the carbon cycle. It is anticipated that sourcing of organic matter may not be uniform across catchments with substantial environmental variability in topography, vegetation zones, and climate. Here we analyze plant leaf wax biomarkers in transit in the Madre de Dios River (Peru), which drains a forested catchment across 4.5 km of elevation from the tropical montane forests of the Andes down into the rainforests of Amazonia. We find that the hydrogen isotopic composition of leaf wax molecules (specifically the C28 n-alkanoic acid) carried by this tropical mountain river largely records the elevation gradient defined by the isotopic composition of precipitation, and this supports the general interpretation of these biomarkers as proxy recorders of catchment conditions. However, we also find that leaf wax isotopic composition varies with river flow regime over storm and seasonal timescales, which could in some cases be quantitatively significant relative to changes in the isotopic composition of precipitation in the past. Our results inform on the sourcing and transport of material by a major tributary of the Amazon River and contribute to the spatial interpretation of sedimentary records of past climate using the leaf wax proxy.
    Description: This work was supported by funding from the U.S. National Science Foundation award 1227192 to A.J.W. and S.J.F. V.G. was supported by the U.S. National Science Foundation award OCE-0928582.
    Description: 2015-03-23
    Keywords: Hydrogen isotopes ; Biomarkers ; Fluvial transport ; Erosion ; Paleoclimate ; Amazon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/richtext
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...