GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 13 (1994), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Peculiarities in the intra-annual variations of 03, N20 and CH4 in the middle and upper stratosphere are analysed by different methods for the middle and polar latitudes of the Northern and the Southern hemispheres. In the middle stratosphere the phase of the O, annual harmonic shifts in the Northern Hemisphere from polar to lower latitudes, while in the Southern Hemisphere the downward shift is exhibited. The phase of the NiO annual harmonic shifts to the poles both in the Northern and Southern hemispheres, but in the Northern Hemisphere it is almost vertical with the horizontal spreading, while in the Southern Hemisphere the phase propagation has a remarkable downward component. The most similar shifts of the phase of the annual harmonic in the middle stratosphere of both hemispheres are exhibited for the CII” content in the middle and high latitudes. Remarkable differences are noted between the intervals with the increase of mixing ratios in the annual cycle at different latitudinal belts. In particular, these intervals are large in subtropical stratosphere, with a shorter and steeper decrease of the mixing ratios. The general decrease of these intervals is exhibited from middle to polar latitudes. The striking difference in temporal variations of the species exists between the northern polar and middle latitudes, where the month-to-month changes of the species are often opposite each to other. These peculiarities and interhemispheric differences are associated with the different stratospheric dynamics of the Northern and Southern hemispheres, particularly with different regimes of planetary wave activity in the northern and southern extratropical latitudes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-14
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Geophysical Research: Atmospheres, 123(5), pp. 2737-2751, ISSN: 2169-897X
    Publication Date: 2020-07-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-16
    Description: Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-14
    Description: Arctic cyclones, as a prevalent feature in the coupled dynamics of the Arctic climate system, have large impacts on the atmospheric transport of heat and moisture and deformation and drifting of sea ice. Previous studies based on historical and future simulations with climate models suggest that Arctic cyclogenesis is affected by the Arctic amplification of global warming, for instance, a growing land-sea thermal contrast. We thus hypothesize that biogeophysical feedbacks (BF) over the land, here mainly referring to the albedo-induced warming in spring and evaporative cooling in summer, may have the potential to significantly change cyclone activity in the Arctic. Based on a regional Earth system model (RCA-GUESS) which couples a dynamic vegetation model and a regional atmospheric model and an algorithm of cyclone detection and tracking, this study assesses for the first time the impacts of BF on the characteristics of Arctic cyclones under three IPCC Representative Concentration Pathways scenarios (i.e. RCP2.6, RCP4.5 and RCP8.5). Our analysis focuses on the spring- and summer time periods, since previous studies showed BF are the most pronounced in these seasons. We find that BF induced by changes in surface heat fluxes lead to changes in land-sea thermal contrast and atmospheric stability. This, in turn, noticeably changes the atmospheric baroclinicity and, thus, leads to a change of cyclone activity in the Arctic, in particular to the increase of cyclone frequency over the Arctic Ocean in spring. This study highlights the importance of accounting for BF in the prediction of Arctic cyclones and the role of circulation in the Arctic regional Earth system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-14
    Description: The Arctic has warmed more than twice the rate of the entire globe. To quantify possible climate change effects, we calculate wind energy potentials from a multi-model ensemble of Arctic-CORDEX. For this, we analyze future changes of wind power density (WPD) using an eleven-member multi-model ensemble. Impacts are estimated for two periods (2020–2049 and 2070–2099) of the 21st century under a high emission scenario (RCP8.5). The multi-model mean reveals an increase of seasonal WPD over the Arctic in the future decades. WPD variability across a range of temporal scales is projected to increase over the Arctic. The signal amplifies by the end of 21st century. Future changes in the frequency of wind speeds at 100 m not useable for wind energy production (wind speeds below 4 m/s or above 25 m/s) has been analyzed. The RCM ensemble simulates a more frequent occurrence of 100 m non-usable wind speeds for the wind-turbines over Scandinavia and selected land areas in Alaska, northern Russia and Canada. In contrast, non-usable wind speeds decrease over large parts of Eastern Siberia and in northern Alaska. Thus, our results indicate increased potential of the Arctic for the development and production of wind energy. Bias corrected and not corrected near-surface wind speed and WPD changes have been compared with each other. It has been found that both show the same sign of future change, but differ in magnitude of these changes. The role of sea-ice retreat and vegetation expansion in the Arctic in future on near-surface wind speed variability has been also assessed. Surface roughness through sea-ice and vegetation changes may significantly impact on WPD variability in the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 39 . L15708.
    Publication Date: 2019-09-23
    Description: The intensity of the two major atmospheric tropical circulations, the Hadley and Walker circulation, has been analyzed in simulations with the Kiel Climate Model (KCM) of the early Eemian and the early Holocene, both warmer climate epochs compared to the late Holocene, or pre-industrial era. The KCM was forced by changes in orbital parameters corresponding to the early and late Holocene (9.5kyr BP and pre-industrial) and the early Eemian (126kyr BP). An intensification of the Southern Hemisphere (SH) winter Hadley cell and a northward extension of its rising branch, the Intertropical Convergence Zone, relative to pre-industrial are simulated for both warm periods. The Walker circulation's rising branch is shifted westward towards the Indian Ocean due to an increased zonal tropical sea surface temperature (SST) gradient across the Indo-Pacific Ocean, which drives enhanced easterlies over this region. The simulated vertically-integrated water vapor transport across the Equator shows the strongest response for the SH winter (boreal summer) Hadley cell over the Pacific Ocean due to an enhanced cross-equatorial SST gradient in the tropical Pacific during the early Holocene and the early Eemian. The orbitally-induced increase of the cross-equatorial insolation gradient in the tropical Pacific leads to a strengthening (weakening) of the wind speed and enhanced (reduced) evaporative cooling over the southern (northern) tropical Pacific, which reinforces the initial radiatively-forced meridional SST gradient change. The increased cross-equatorial insolation gradient in combination with the strong wind-evaporation-SST feedback and changing humidity are important mechanisms to enhance the SH winter Hadley circulation response to orbital forcing. Key Points: Intensification of the SH winter Hadley cell for the early Holocene and Eemian. Walker circulation's rising branch is shifted westward towards the Indian Ocean. WES feedback plays key role in intensification of the Hadley circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-08
    Description: The ability of state‐of‐the‐art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic‐CORDEX initiative. Some models employ large‐scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA‐Interim, National Centers for Environmental Prediction‐Climate Forecast System Reanalysis, National Aeronautics and Space Administration‐Modern‐Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency‐Japanese 55‐year reanalysis) in winter and summer for 1981–2010 period. In addition, we compare cyclone statistics between ERA‐Interim and the Arctic System Reanalysis reanalyses for 2000–2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large‐scale spectral nudging show a better agreement with ERA‐Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potential magnitude and sign of ZEC, in addition to the processes that underlie this metric. A total of 18 Earth system models of both full and intermediate complexity participated in ZECMIP. All models conducted an experiment where atmospheric CO2 concentration increases exponentially until 1000 PgC has been emitted. Thereafter emissions are set to zero and models are configured to allow free evolution of atmospheric CO2 concentration. Many models conducted additional second-priority simulations with different cumulative emission totals and an alternative idealized emissions pathway with a gradual transition to zero emissions. The inter-model range of ZEC 50 years after emissions cease for the 1000 PgC experiment is −0.36 to 0.29 ∘C, with a model ensemble mean of −0.07 ∘C, median of −0.05 ∘C, and standard deviation of 0.19 ∘C. Models exhibit a wide variety of behaviours after emissions cease, with some models continuing to warm for decades to millennia and others cooling substantially. Analysis shows that both the carbon uptake by the ocean and the terrestrial biosphere are important for counteracting the warming effect from the reduction in ocean heat uptake in the decades after emissions cease. This warming effect is difficult to constrain due to high uncertainty in the efficacy of ocean heat uptake. Overall, the most likely value of ZEC on multi-decadal timescales is close to zero, consistent with previous model experiments and simple theory.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...