GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 13 (1994), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: Peculiarities in the intra-annual variations of 03, N20 and CH4 in the middle and upper stratosphere are analysed by different methods for the middle and polar latitudes of the Northern and the Southern hemispheres. In the middle stratosphere the phase of the O, annual harmonic shifts in the Northern Hemisphere from polar to lower latitudes, while in the Southern Hemisphere the downward shift is exhibited. The phase of the NiO annual harmonic shifts to the poles both in the Northern and Southern hemispheres, but in the Northern Hemisphere it is almost vertical with the horizontal spreading, while in the Southern Hemisphere the phase propagation has a remarkable downward component. The most similar shifts of the phase of the annual harmonic in the middle stratosphere of both hemispheres are exhibited for the CII” content in the middle and high latitudes. Remarkable differences are noted between the intervals with the increase of mixing ratios in the annual cycle at different latitudinal belts. In particular, these intervals are large in subtropical stratosphere, with a shorter and steeper decrease of the mixing ratios. The general decrease of these intervals is exhibited from middle to polar latitudes. The striking difference in temporal variations of the species exists between the northern polar and middle latitudes, where the month-to-month changes of the species are often opposite each to other. These peculiarities and interhemispheric differences are associated with the different stratospheric dynamics of the Northern and Southern hemispheres, particularly with different regimes of planetary wave activity in the northern and southern extratropical latitudes.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Atmospheric and Solar-Terrestrial Physics, 187 . pp. 53-62.
    Publication Date: 2021-01-08
    Description: Relation of decadal variations of the North Atlantic Oscillation index (NAOI) to the 11-year solar cycle in the sunspot number is analyzed for almost 200-year observational period with the use of cross-spectral and cross-wavelet techniques. Based on wavelet transforms of a pair of time series, local cross characteristics such as the local coherency and local correlation are used to study time evolution of the solar–NAOI relationship. The analysis of the NAOI is supplemented and confirmed by similar analysis of more than 300-year long data of Central England temperature (CET). Both the solar cycle–NAOI and solar cycle–CET relationships exhibit a quasi-periodic oscillation with the mean period of about 50 years, which includes a subinterval with positive coherency and a subinterval with negative coherency between the solar cycle and the 11-year modes of the NAOI and CET. The same multidecadal modulation of the solar–NAOI relationship is manifested in the temporal structure of the local correlation between the 11-year modes of the NAOI and the sunspot number at specific time lags of the NAOI relative to the sunspot number. It is distinct in the local correlations for the extended winter period (November–March) NAOI lagging by 7 years after the sunspot number. At this lag, the NAOI anticorrelates in general with the sunspot number and the local anticorrelation reinforces periodically with the aforementioned ∼50 year period. At the 1-year lag, which differs from the 7-year lag by a half solar cycle, the 11-year mode of the winter NAOI correlates in general with the solar cycle but the correlation is mainly associated with the last 70-year time interval. The change in the sign of the solar–NAOI relationship is also the case for the extended summer periods of the year (May–September). For this period, the approximately mirror image of the local correlations is observed at the 7-year and 1-year lags. The multidecadal modulation is likely associated with periods of enhanced solar impact on the NAO.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...