GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Sokoll, Sarah; Holtappels, Moritz; Lam, Phyllis; Collins, Gavin; Schlüter, Michael; Lavik, Gaute; Kuypers, Marcel MM (2012): Benthic nitrogen loss in the Arabian Sea off Pakistan. Frontiers in Microbiology, 3, https://doi.org/10.3389/fmicb.2012.00395
    Publikationsdatum: 2023-05-12
    Beschreibung: A pronounced deficit of nitrogen (N) in the oxygen minimum zone (OMZ) of the Arabian Sea suggests the occurrence of heavy N-loss that is commonly attributed to pelagic processes. However, the OMZ water is in direct contact with sediments on three sides of the basin. Contribution from benthic N-loss to the total N-loss in the Arabian Sea remains largely unassessed. In October 2007, we sampled the water column and surface sediments along a transect cross-cutting the Arabian Sea OMZ at the Pakistan continental margin, covering a range of station depths from 360 to 1430 m. Benthic denitrification and anammox rates were determined by using 15N-stable isotope pairing experiments. Intact core incubations showed declining rates of total benthic N-loss with water depth from 0.55 to 0.18 mmol N m**-2 day**-1. While denitrification rates measured in slurry incubations decreased from 2.73 to 1.46 mmol N m**-2 day**-1 with water depth, anammox rates increased from 0.21 to 0.89 mmol N m**-2 day**-1. Hence, the contribution from anammox to total benthic N-loss increased from 7% at 360 m to 40% at 1430 m. This trend is further supported by the quantification of cd1-containing nitrite reductase (nirS), the biomarker functional gene encoding for cytochrome cd1-Nir of microorganisms involved in both N-loss processes. Anammox-like nirS genes within the sediments increased in proportion to total nirS gene copies with water depth. Moreover, phylogenetic analyses of NirS revealed different communities of both denitrifying and anammox bacteria between shallow and deep stations. Together, rate measurement and nirS analyses showed that anammox, determined for the first time in the Arabian Sea sediments, is an important benthic N-loss process at the continental margin off Pakistan, especially in the sediments at deeper water depths. Extrapolation from the measured benthic N-loss to all shelf sediments within the basin suggests that benthic N-loss may be responsible for about half of the overall N-loss in the Arabian Sea.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Kalvelage, Tim; Lavik, Gaute; Lam, Phyllis; Contreras, Sergio; Arteaga, Lionel; Löscher, Carolin R; Oschlies, Andreas; Stramma, Lothar; Kuypers, Marcel MM (2013): Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone. Nature Geoscience, 6(3), 228-234, https://doi.org/10.1038/ngeo1739
    Publikationsdatum: 2023-10-28
    Beschreibung: Oxygen minimum zones are expanding globally, and at present account for around 20-40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox-anaerobic ammonium oxidation with nitrite-are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.
    Schlagwort(e): Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754
    Materialart: Dataset
    Format: application/zip, 6 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology ecology 47 (2004), S. 0 
    ISSN: 1574-6941
    Quelle: Blackwell Publishing Journal Backfiles 1879-2005
    Thema: Biologie
    Notizen: Direct evidence for autotrophic ammonia oxidation is documented for the first time in a deep-sea hydrothermal plume. Elevated NH4+ concentrations of up to 341±136 nM were recorded in the plume core at Main Endeavour Field, Juan de Fuca Ridge. This fueled autotrophic ammonia oxidation rates as high as 91 nM day−1, or 92% of the total net NH4+ removal. High abundance of ammonia-oxidizing bacteria was detected using fluorescence in situ hybridization. Ammonia-oxidizing bacteria within the plume core (1.0–1.4×104 cells ml−1) accounted for 7.0–7.5% of the total microbial community, and were at least as abundant as methanotrophs. Ammonia-oxidizing bacteria were a substantial component of the particle-associated communities (up to 51%), with a predominance of the r-strategist Nitrosomonas-like cells. In situ chemolithoautotrophic organic carbon production via ammonia oxidation may yield 3.9–18 mg C m−2 day−1 within the plume directly over Main Endeavour Field. This rate was comparable to that determined for methane oxidation in a previous study, or at least four-fold greater than the flux of photosynthetic carbon reaching plume depths measured in another study. Hence, autotrophic ammonia oxidation in the neutrally buoyant hydrothermal plume is significant to both carbon and nitrogen cycling in the deep-sea water column at Endeavour, and represents another important link between seafloor hydrothermal systems and deep-sea biogeochemistry.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-01-22
    Beschreibung: The ocean's biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralization resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralization depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However, these analyses do not provide a mechanistic understanding of remineralization, which increases the challenge of appropriately modeling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterization for mesopelagic remineralization within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme's rationale, its goals, planned fieldwork, and modeling activities, with the aim of stimulating international collaboration.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2022-05-25
    Beschreibung: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Torres-Beltran, M., Mueller, A., Scofield, M., Pachiadaki, M. G., Taylor, C., Tyshchenko, K., Michiels, C., Lam, P., Ulloa, O., Jurgens, K., Hyun, J., Edgcomb, V. P., Crowe, S. A., & Hallam, S. J. Sampling and processing methods impact microbial community structure and potential activity in a seasonally anoxic fjord: Saanich Inlet, British Columbia. Frontiers in Marine Science, 6,(2019):132, doi:10.3389/fmars.2019.00132.
    Beschreibung: The Scientific Committee on Oceanographic Research (SCOR) Working Group 144 Microbial Community Responses to Ocean Deoxygenation workshop held in Vancouver, B.C on July 2014 had the primary objective of initiating a process to standardize operating procedures for compatible process rate and multi-omic (DNA, RNA, protein, and metabolite) data collection in marine oxygen minimum zones and other oxygen depleted waters. Workshop attendees participated in practical sampling and experimental activities in Saanich Inlet, British Columbia, a seasonally anoxic fjord. Experiments were designed to compare and cross-calibrate in situ versus bottle sampling methods to determine effects on microbial community structure and potential activity when using different filter combinations, filtration methods, and sample volumes. Resulting biomass was preserved for small subunit ribosomal RNA (SSU or 16S rRNA) and SSU rRNA gene (rDNA) amplicon sequencing followed by downstream statistical and visual analyses. Results from these analyses showed that significant community shifts occurred between in situ versus on ship processed samples. For example, Bacteroidetes, Alphaproteobacteria, and Opisthokonta associated with on-ship filtration onto 0.4 μm filters increased fivefold compared to on-ship in-line 0.22 μm filters or 0.4 μm filters processed and preserved in situ. In contrast, Planctomycetes associated with 0.4 μm in situ filters increased fivefold compared to on-ship filtration onto 0.4 μm filters and on-ship in-line 0.22 μm filters. In addition, candidate divisions and Chloroflexi were primarily recovered when filtered onto 0.4 μm filters in situ. Results based on rRNA:rDNA ratios for microbial indicator groups revealed previously unrecognized roles of candidate divisions, Desulfarculales, and Desulfuromandales in sulfur cycling, carbon fixation and fermentation within anoxic basin waters. Taken together, filter size and in situ versus on-ship filtration had the largest impact on recovery of microbial groups with the potential to influence downstream metabolic reconstruction and process rate measurements. These observations highlight the need for establishing standardized and reproducible techniques that facilitate cross-scale comparisons and more accurately assess in situ activities of microbial communities.
    Beschreibung: This work was performed under the auspices of the Scientific Committee on Oceanographic Research (SCOR), the United States Department of Energy (DOE) Joint Genome Institute, an Office of Science User Facility, supported by the Office of Science of the United States Department of Energy under Contract DE-AC02- 05CH11231, the G. Unger Vetlesen and Ambrose Monell Foundations, the Tula Foundation-funded Centre for Microbial Diversity and Evolution, the Natural Sciences and Engineering Research Council of Canada, Genome British Columbia, the Canada Foundation for Innovation, and the Canadian Institute for Advanced Research through grants awarded to SH. McLane Research Laboratories and Connie Lovejoy contributed access to instrumentation for field work. Ship time support was provided by NSERC between 2007 and 2014 through grants awarded to SC, SH and Philippe Tortell MT-B was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT) and the Tula Foundation.
    Schlagwort(e): microbial ecology ; oxygen minimum zone ; standards of practice ; filtration methods ; amplicon sequencing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-09-23
    Beschreibung: Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-09-23
    Beschreibung: Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3− reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ~20 µmol L−1. In contrast, NH3 oxidation to NO2− and NO3− reduction to NO2− as the main NH4+ and NO2− sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3− reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3− reduction. With anammox bacteria in the marine environment being active at O2 levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...