GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The availability of fixed inorganic nitrogen (nitrate, nitrite and ammonium) limits primary productivity in many oceanic regions. The conversion of nitrate to N2 by heterotrophic bacteria (denitrification) is believed to be the only important sink for fixed inorganic nitrogen in the ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 399 (1999), S. 342-345 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Marine carbonates and organic matter show a sharp increase in their 13C/12C isotope ratio at the Cenomanian/Turonian (C/T) boundary, in the Cretaceous period. This isotopic shift resulted from an increase in the rate of sedimentary burial of 13C-depleted ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Members of the gammaproteobacterial clade SUP05 couple water column sulfide oxidation to nitrate reduction in sulfidic oxygen minimum zones (OMZs). Their abundance in offshore OMZ waters devoid of detectable sulfide has led to the suggestion that local sulfate reduction fuels SUP05-mediated sulfide oxidation in a so-called “cryptic sulfur cycle”. We examined the distribution and metabolic capacity of SUP05 in Peru Upwelling waters, using a combination of oceanographic, molecular, biogeochemical and single-cell techniques. A single SUP05 species, UThioglobus perditus, was found to be abundant and active in both sulfidic shelf and sulfide-free offshore OMZ waters. Our combined data indicated that mesoscale eddy-driven transport led to the dispersal of UT. perditus and elemental sulfur from the sulfidic shelf waters into the offshore OMZ region. This offshore transport of shelf waters provides an alternative explanation for the abundance and activity of sulfide-oxidizing denitrifying bacteria in sulfide-poor offshore OMZ waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-11
    Description: Despite its huge ecological importance, microbial oxygen respiration in pelagic waters is little studied, primarily due to methodological difficulties. Respiration measurements are challenging because of the required high resolution of oxygen concentration measurements. Recent improvements in oxygen sensing techniques bear great potential to overcome these limitations. Here we compare 3 different methods to measure oxygen consumption rates at low oxygen concentrations, utilizing amperometric Clark type sensors (STOX), optical sensors (optodes), and mass spectrometry in combination with 18-18O2 labeling. Oxygen concentrations and consumption rates agreed well between the different methods when applied in the same experimental setting. Oxygen consumption rates between 30 and 400 nmol L−1 h−1 were measured with high precision and relative standard errors of less than 3%. Rate detection limits in the range of 1 nmol L−1 h−1 were suitable for rate determinations in open ocean water and were lowest at the lowest applied O2 concentration.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Oxygen minimum zones are expanding globally, and at present account for around 20–40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox—anaerobic ammonium oxidation with nitrite—are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-09
    Description: Nitrogen fixation, the biological reduction of dinitrogen gas (N2) to ammonium (NH4+), is quantitatively the most important external source of new nitrogen (N) to the open ocean. Classically, the ecological niche of oceanic N2 fixers (diazotrophs) is ascribed to tropical oligotrophic surface waters, often depleted in fixed N, with a diazotrophic community dominated by cyanobacteria. Although this applies for large areas of the ocean, biogeochemical models and phylogenetic studies suggest that the oceanic diazotrophic niche may be much broader than previously considered, resulting in major implications for the global N-budget. Here, we report on the composition, distribution and abundance of nifH, the functional gene marker for N2 fixation. Our results show the presence of eight clades of diazotrophs in the oxygen minimum zone (OMZ) off Peru. Although proteobacterial clades dominated overall, two clusters affiliated to spirochaeta and archaea were identified. N2 fixation was detected within OMZ waters and was stimulated by the addition of organic carbon sources supporting the view that non-phototrophic diazotrophs were actively fixing dinitrogen. The observed co-occurrence of key functional genes for N2 fixation, nitrification, anammox and denitrification suggests that a close spatial coupling of N-input and N-loss processes exists in the OMZ off Peru. The wide distribution of diazotrophs throughout the water column adds to the emerging view that the habitat of marine diazotrophs can be extended to low oxygen/high nitrate areas. Furthermore, our statistical analysis suggests that NO2− and PO43− are the major factors affecting diazotrophic distribution throughout the OMZ. In view of the predicted increase in ocean deoxygenation resulting from global warming, our findings indicate that the importance of OMZs as niches for N2 fixation may increase in the futur
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-06-22
    Description: Unicellular, diazotrophic cyanobacteria temporally separate dinitrogen (N-2) fixation and photosynthesis to prevent inactivation of the nitrogenase by oxygen. This temporal segregation is regulated by a circadian clock with oscillating activities of N-2 fixation in the dark and photosynthesis in the light. On the population level, this separation is not always complete, since the two processes can overlap during transitions from dark to light. How do single cells avoid inactivation of nitrogenase during these periods? One possibility is that phenotypic heterogeneity in populations leads to segregation of the two processes. Here, we measured N-2 fixation and photosynthesis of individual cells using nanometer-scale secondary ion mass spectrometry (nanoSIMS) to assess both processes in a culture of the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii during a dark-light and a continuous light phase. We compared single-cell rates with bulk rates and gene expression profiles. During the regular dark and light phases, C. watsonii exhibited the temporal segregation of N-2 fixation and photosynthesis commonly observed. However, N-2 fixation and photosynthesis were concurrently measurable at the population level during the subjective dark phase in which cells were kept in the light rather than returned to the expected dark phase. At the single-cell level, though, cells discriminated against either one of the two processes. Cells that showed high levels of photosynthesis had low nitrogen fixing activities, and vice versa. These results suggest that, under ambiguous environmental signals, single cells discriminate against either photosynthesis or nitrogen fixation, and thereby might reduce costs associated with running incompatible processes in the same cell.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area 〉5500 km2, which contained ~2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ~440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ~30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ waters
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-02
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-09
    Description: Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean’s nitrogen inventory and primary productivity. Nitrogen-isotope data fromocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogenbudget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 TgNyr-1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method8 can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimatesN2-fixation rates by an averageof 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and c-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14+/-1TgNyr-1 and 24+/-1TgNyr-1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103+/-8TgNyr-1 to 177+/-8TgNyr-1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...