GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-08
    Description: Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi, fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 ± 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 ± 0.31 and 0.55 ± 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO3 in the ocean, and the evolution of coccoliths.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: In this paper we review on the technologies available to make globally quantitative observations of particles, in general, and plankton, in particular, in the world oceans, and for sizes varying from sub-micron to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical, acoustical methods and analysis using particles counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next ten years to move towards our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries, and carbon sequestration.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-14
    Description: In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-22
    Description: The ocean's biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralization resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralization depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However, these analyses do not provide a mechanistic understanding of remineralization, which increases the challenge of appropriately modeling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterization for mesopelagic remineralization within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme's rationale, its goals, planned fieldwork, and modeling activities, with the aim of stimulating international collaboration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Mayers, K. M. J., Poulton, A. J., Bidle, K., Thamatrakoln, K., Schieler, B., Giering, S. L. C., Wells, S. R., Tarran, G. A., Mayor, D., Johnson, M., Riebesell, U., Larsen, A., Vardi, A., & Harvey, E. L. The possession of coccoliths fails to deter microzooplankton grazers. Frontiers in Marine Science, 7, (2020): 562020, doi:10.3389/fmars.2020.569896.
    Description: Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi, fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 ± 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 ± 0.31 and 0.55 ± 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO3 in the ocean, and the evolution of coccoliths.
    Description: Mesocosm experiments in 2015 were supported by the Kiel Excellence Cluster “The Future Ocean” (CP1540) and the Leibniz Award to UR, in 2017 the MESOHUX experiment was supported by NSF (OCE-1559179) to KT and KB, NSF (OCE-1537951 and OCE-1459200) to KB, NSF (OCE-1459190, 1657808, and DBI-1624593) to EH, and in 2018 by AQUACOSM (EU H2020-INFRAIA-project No 731065). KM was supported by a NERC Doctoral Training Partnership (DTP) studentship as part of the Southampton Partnership for Innovative Training of Future Investigators Researching the Environment (SPITFIRE, grant number NE/L002531/1) and Research Council of Norway project (#280414) MIXsTRUCT.
    Keywords: coccolithophore ; phytoplankton ; microzooplankton ; biomineralisation ; predation ; evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-18
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Orenstein, E., Ayata, S., Maps, F., Becker, É., Benedetti, F., Biard, T., Garidel‐Thoron, T., Ellen, J., Ferrario, F., Giering, S., Guy‐Haim, T., Hoebeke, L., Iversen, M., Kiørboe, T., Lalonde, J., Lana, A., Laviale, M., Lombard, F., Lorimer, T., Martini, S., Meyer, A., Möller, K.O., Niehoff, B., Ohman, M.D., Pradalier, C., Romagnan, J.-B., Schröder, S.-M., Sonnet, V., Sosik, H.M., Stemmann, L.S., Stock, M., Terbiyik-Kurt, T., Valcárcel-Pérez, N., Vilgrain, L., Wacquet, G., Waite, A.M., & Irisson, J. Machine learning techniques to characterize functional traits of plankton from image data. Limnology and Oceanography, 67(8), (2022): 1647-1669, https://doi.org/10.1002/lno.12101.
    Description: Plankton imaging systems supported by automated classification and analysis have improved ecologists' ability to observe aquatic ecosystems. Today, we are on the cusp of reliably tracking plankton populations with a suite of lab-based and in situ tools, collecting imaging data at unprecedentedly fine spatial and temporal scales. But these data have potential well beyond examining the abundances of different taxa; the individual images themselves contain a wealth of information on functional traits. Here, we outline traits that could be measured from image data, suggest machine learning and computer vision approaches to extract functional trait information from the images, and discuss promising avenues for novel studies. The approaches we discuss are data agnostic and are broadly applicable to imagery of other aquatic or terrestrial organisms.
    Description: SDA acknowledges funding from CNRS for her sabbatical in 2018–2020. Additional support was provided by the Institut des Sciences du Calcul et des Données (ISCD) of Sorbonne Université (SU) through the support of the sponsored junior team FORMAL (From ObseRving to Modeling oceAn Life), especially through the post-doctoral contract of EO. JOI acknowledges funding from the Belmont Forum, grant ANR-18-BELM-0003-01. French co-authors also wish to thank public taxpayers who fund their salaries. This work is a contribution to the scientific program of Québec Océan and the Takuvik Joint International Laboratory (UMI3376; CNRS - Université Laval). FM was supported by an NSERC Discovery Grant (RGPIN-2014-05433). MS is supported by the Research Foundation - Flanders (FWO17/PDO/067). FB received support from ETH Zürich. MDO is supported by the Gordon and Betty Moore Foundation and the U.S. National Science Foundation. ECB is supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under the grant agreement no. 88882.438735/2019-01. TB is supported by the French National Research Agency (ANR-19-CE01-0006). NVP is supported by the Spanish State Research Agency, Ministry of Science and Innovation (PTA2016-12822-I). FL is supported by the Institut Universitaire de France (IUF). HMS was supported by the Simons Foundation (561126) and the U.S. National Science Foundation (CCF-1539256, OCE-1655686). Emily Peacock is gratefully acknowledged for expert annotation of IFCB images. LS was supported by the Chair VISION from CNRS/Sorbonne Université.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lombard, F., Boss, E., Waite, A. M., Vogt, M., Uitz, J., Stemmann, L., Sosik, H. M., Schulz, J., Romagnan, J., Picheral, M., Pearlman, J., Ohman, M. D., Niehoff, B., Moeller, K. M., Miloslavich, P., Lara-Lpez, A., Kudela, R., Lopes, R. M., Kiko, R., Karp-Boss, L., Jaffe, J. S., Iversen, M. H., Frisson, J., Fennel, K., Hauss, H., Guidi, L., Gorsky, G., Giering, S. L. C., Gaube, P., Gallager, S., Dubelaar, G., Cowen, R. K., Carlotti, F., Briseno-Avena, C., Berline, L., Benoit-Bird, K., Bax, N., Batten, S., Ayata, S. D., Artigas, L. F., & Appeltans, W. Globally consistent quantitative observations of planktonic ecosystems. Frontiers in Marine Science, 6, (2019):196, doi:10.3389/fmars.2019.00196.
    Description: In this paper we review the technologies available to make globally quantitative observations of particles in general—and plankton in particular—in the world oceans, and for sizes varying from sub-microns to centimeters. Some of these technologies have been available for years while others have only recently emerged. Use of these technologies is critical to improve understanding of the processes that control abundances, distributions and composition of plankton, provide data necessary to constrain and improve ecosystem and biogeochemical models, and forecast changes in marine ecosystems in light of climate change. In this paper we begin by providing the motivation for plankton observations, quantification and diversity qualification on a global scale. We then expand on the state-of-the-art, detailing a variety of relevant and (mostly) mature technologies and measurements, including bulk measurements of plankton, pigment composition, uses of genomic, optical and acoustical methods as well as analysis using particle counters, flow cytometers and quantitative imaging devices. We follow by highlighting the requirements necessary for a plankton observing system, the approach to achieve it and associated challenges. We conclude with ranked action-item recommendations for the next 10 years to move toward our vision of a holistic ocean-wide plankton observing system. Particularly, we suggest to begin with a demonstration project on a GO-SHIP line and/or a long-term observation site and expand from there, ensuring that issues associated with methods, observation tools, data analysis, quality assessment and curation are addressed early in the implementation. Global coordination is key for the success of this vision and will bring new insights on processes associated with nutrient regeneration, ocean production, fisheries and carbon sequestration.
    Description: Much of this manuscript flows from discussions of the authors with the members of SCOR working groups 150 (TOMCAT) and 154 (P-OBS) as well as discussions with the greater community in various GOOS workshops. We also thank Mike Sieracki, Cabell Davis, Daniele Iudicone, Eric Karsenti, Sebastien Colin, Colomban de Vargas, Ulf Riebesell, Fabrice Not, David Checkley, George Jackson, Cédric Guigand, Ed Urban, Frank Muller-Karger, Sanae Chiba and Daniel Dunn, who contributed to the initial abstracts to OceanObs'19. FL is supported by the Institut Universitaire de France. EB is supported by the NASA biology and biogeochemistry program. RKi and HH were supported by the German Science Foundation through the Collaborative Research Center 754 ‘Climate-Biogeochemistry Interactions in the Tropical Ocean’. SDA acknowledges the CNRS for her sabbatical year as visiting researcher at ISYEB on the use of genomics and next generation sequencing for plankton studies. HS acknowledges support from the Simons Foundation, the U.S. National Science Foundation, and the U.S. National Oceanic and Atmospheric Administration through the Cooperative Institute for the North Atlantic Region. FL and EB contribution was also inspired by their years of work within the Tara Expeditions initiative.
    Keywords: plankton ; imaging ; OceanObs ; autonomous platforms ; global observing ; EOVs ; ECVs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...