GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 389 (1997), S. 275-278 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The sources and burial processes of organic matter in marine sediments are not well understood, yet they are important if we are to have a better understanding of the global carbon cycle. In particular, the nature and fraction of the terrestrial organic carbon preserved in marine sediments is ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0935-6304
    Keywords: Isotope ratio monitoring-Gas Chromatography-Mass Spectrometry (irm-GC-MS) ; Compound specific isotope analysis (CSIA) ; Pyrolysis ; Stable carbon isotopes ; Kerogen ; Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: This study describes the application of isotope ratio monitoring gas chromatography- mass spectrometry (irm-GC-MS) for compound-specific stable carbon isotopic analysis of aliphatic hydrocarbon and phenolic products from flash pyrolysis (800 °C, 20s) of natural biopolymers and sedimentary kerogens. As part of this work, we provide a detailed description of the analysis of complex samples, including approaches for peak integration, data handling and correction for derivative carbons. Several aliphatic and aromatic biopolymers are analyzed by irm-GC-MS in order to establish relationships between the isotopic signatures of pyrolysis products and those of their parent macromolecules. We also analyze a select group of kerogens and kerogen precursors of different ages and biopolymer compositions to evaluate the applicability of combined pyrolysis/irm-GC-MS to complex geochemical mixtures. Our findings suggest that, in spite of the wide degree of heterogeneity, the isotopic values of individual aliphatic and phenolic pyrolysis products determined by irm-GC-MS can be related to the isotopic composition of the total organic carbon in kerogens and used to trace its biological sources. This study also highlights the need for optimum chromatographic separation in order to fully realize the potential of compound specific isotope analyses.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-04
    Description: The Lena River in central Siberia represents one of the major pathways for relocating pre-aged terrestrial organic matter (OMterr) stored in permafrost soils from its catchment to the coastal zone of the Laptev Sea. Future Arctic warming and permafrost thawing will likely enhance the re-mobilization and export of this pre-aged OMterr. Despite our improving knowledge about the fate of OMterr released from permafrost, the quality and age of particulate OMterr as well as the sources within the large watershed contributing to the exported OMterr are still not completely understood. To characterize the composition and sources of OMterr discharged by the Lena River, we analyzed the lignin phenol and carbon isotopic composition (δ13C and ∆14C) in Lena Delta soils, total suspended matter (TSM) from surface waters along with surface sediments offshore the delta. A simple linear mixing model based on the bulk lignin phenol distributions indicates that OMterr in TSM samples and coastal surface sediments contains comparable contributions from gymnosperms originating from the taiga forests south of the delta and angiosperms typical for tundra vegetation. Further, we present results of the lignin phenol compositions and inferred sources of OMterr transported with specific grain-size classes (〉2mm, 63µm – 2mm, 〈63µm) of soil and sediment samples associated with different hydrological conditions (spring flood vs. summer low flow). Overall stronger diagenetic alteration in TSM and coastal sediments relative to soils appears to reflect degradation of more labile components during permafrost thawing and transport. Moreover, Lignin phenols and ∆14C of surface sediments suggest that OMTERR deposited offshore is more degraded and older than materials present in river suspended particles and catchment soils.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-24
    Description: The Lena River in central Siberia is one of the major pathways translocating terrestrial organic matter (OM) from its vast catchment area to the coastal zone of the Laptev Sea and the Arctic Ocean. The permafrost soils of its far south-stretching catchment, which store huge amounts of OM, will most likely respond differently to climate warming and remobilize previously frozen OM with distinct properties specific for the source vegetation and soil. To characterize the material discharged by the Lena River, we analyzed the lignin phenol composition in total suspended matter (TSM) from surface water collected in spring and summer, surface sediments from Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex), and plant samples. Our results show that lignin-derived cinnamyl : vanillyl (C / V) and syringyl : vanillyl (S / V) ratios are 〉 0.14 and 0.25, respectively, in TSM and surface sediments, whereas in delta soils they are 〉 0.16 and 〉 0.51, respectively. These lignin compositions are consistent with significant inputs of organic matter from non-woody angiosperm sources mixed with organic matter derived from woody gymnosperm sources. We applied a simple linear mixing model based on the C / V and S / V ratios, and the results indicate the organic matter in delta TSM samples and Buor Khaya Bay surface sediments contain comparable contributions from gymnosperm material, which is primarily derived from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small catchment area covered by tundra (~ 12%), the input is substantial and tundra-derived OM input is likely to increase in a warming Arctic. The similar and high acid to aldehyde ratios of vanillyl and syringyl (Ad / AlV, S) in Lena Delta summer TSM (〉 0.7 and 〉 0.5, respectively) and Buor Khaya Bay surface sediments (〉 1.0 and 〉 0.9, respectively) suggest that the OM is highly degraded and Lena River summer TSM could be a possible source of the surface sediments. The Ad / AlV, S ratios of the first and third delta terraces were generally lower (mean ratios 〉 0.4 and 〉 0.4, respectively) than summer TSM and surface sediments. This implies that TSM contains additional contributions from a more degraded OM source (southern catchment and/or finer more degraded particle size). Alternatively, OM degradation on land after permafrost thawing and subaqueously during transport and sedimentation could be considerable. Despite the high natural heterogeneity of OM stored in delta soils and exported by the Lena River, the catchment-characteristic vegetation is reflected by the lignin biomarker composition. Climate-warming-related changes in the Lena River catchment may be detectable in changing lignin biomarker composition and diagenetic alteration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-17
    Description: The Lena River in central Siberia is one of the major pathways translocating terrestrial organic matter (OMterr) from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea and the Arctic Ocean. Permafrost soils from its vast catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, we analyzed the lignin phenol and carbon isotopic composition (δ13C and ∆14C) in total suspended matter (TSM) from surface waters collected in spring and summer, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta. A simple linear mixing model based on the lignin phenol distributions indicates OM in TSM samples from the delta and Buor Khaya Bay surface sediments contains comparable contributions from gymnosperm sources, which are primarily from the taiga forests south of the delta, and angiosperm material typical for tundra vegetation. Considering the small area covered by tundra (~12% of total catchment), the input of tundra-derived OM input is substantial and likely to increase in a warming Arctic. Radiocarbon compositions (∆14C) of bulk OM in TSM samples varied from -55 to -391‰, i.e. 14C ages of 395 to 3920 yrs BP. Using δ13C compositions to estimate the fraction of phytoplankton-derived OM and assuming that this material has a modern 14C signature, we inferred the ∆14C compositions of OMterr in TSM exported by the Lena River to range between -190 and -700‰. Such variability in the ages of OMTERR (i.e. 1640 to 9720 14C yrs BP) reflects the heterogeneous composition and residence time of OM in the Lena River catchment soils (Holocene to Pleistocene ages). Lignin phenol and ∆14C compositions of surface sediments from the adjacent Buor Khaya Bay suggest that OMTERR deposited there is older and more degraded than materials present in river particles and catchment soils. Stronger diagenetic alteration in Lena Delta TSM and marine sediments relative to soils may reflect degradation of more labile components during permafrost thawing and transport. Despite the high natural heterogeneity in catchment soils, the lignin biomarker compositions and radiocarbon ages of OMTERR exported by the Lena River reflect catchment characteristics such as vegetation and soil type.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ward, N. D., Megonigal, J. P., Bond-Lamberty, B., Bailey, V. L., Butman, D., Canuel, E. A., Diefenderfer, H., Ganju, N. K., Goni, M. A., Graham, E. B., Hopkinson, C. S., Khangaonkar, T., Langley, J. A., McDowell, N. G., Myers-Pigg, A. N., Neumann, R. B., Osburn, C. L., Price, R. M., Rowland, J., Sengupta, A., Simard, M., Thornton, P. E., Tzortziou, M., Vargas, R., Weisenhorn, P. B., & Windham-Myers, L. Representing the function and sensitivity of coastal interfaces in earth system models. Nature Communications, 11(1), (2020): 2458, doi:10.1038/s41467-020-16236-2.
    Description: Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth’s climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.
    Description: Funding for this work was provided by Pacific Northwest National Laboratory (PNNL) Laboratory Directed Research & Development (LDRD) as part of the Predicting Ecosystem Resilience through Multiscale Integrative Science (PREMIS) Initiative. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. Additional support to J.P.M. was provided by the NSF-LTREB program (DEB-0950080, DEB-1457100, DEB-1557009), DOE-TES Program (DE-SC0008339), and the Smithsonian Institution. This manuscript was motivated by discussions held by co-authors during a three-day workshop at PNNL in Richland, WA: The System for Terrestrial Aquatic Research (STAR) Workshop: Terrestrial-Aquatic Research in Coastal Systems. The authors thank PNNL artist Nathan Johnson for preparing the figures in this manuscript and Terry Clark, Dr. Charlette Geffen, and Dr. Nancy Hess for their aid in organizing the STAR workshop. The authors thank all workshop participants not listed as authors for their valuable insight: Lihini Aluwihare (contributed to biogeochemistry discussions and development of concept for Fig. 3), Gautam Bisht (contributed to modeling discussion), Emmett Duffy (contributed to observational network discussions), Yilin Fang (contributed to modeling discussion), Jeremy Jones (contributed to biogeochemistry discussions), Roser Matamala (contributed to biogeochemistry discussions), James Morris (contributed to biogeochemistry discussions), Robert Twilley (contributed to biogeochemistry discussions), and Jesse Vance (contributed to observational network discussions). A full report on the workshop discussions can be found at https://www.pnnl.gov/publications/star-workshop-terrestrial-aquatic-research-coastal-systems.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Dataset: Underway Chl
    Description: Particulate chlorophyll data set and added temperature and salinity from samples collected using ship’s surface underway system taken on board of the R/V Oceanus OC1701A, OC1611B, OC1603B, OC1602A, OC1601A in the Oregon Coast (47-43 N, 126-124 W) from 2016 to 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/817214
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459480
    Keywords: Surface Waters ; Particulate Organic Matter ; chlorophyll ; California Current ; Oregon Margin
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Workshop held August 19-21, 2014, Woods Hole, MA
    Description: Relative to their surface area, continental margins represent some of the largest carbon fluxes in the global ocean, but sparse and sporadic sampling in space and time makes these systems difficult to characterize and quantify. Recognizing the importance of continental margins to the overall North American carbon budget, terrestrial and marine carbon cycle scientists have been collaborating on a series of synthesis, carbon budgeting, and modeling exercises for coastal regions of North America, which include the Gulf of Mexico, the Laurentian Great Lakes (LGL), and the coastal waters of the Atlantic, Pacific, and Arctic Oceans. The Coastal CARbon Synthesis (CCARS) workshops and research activities have been conducted over the past several years as a partner activity between the Ocean Carbon and Biogeochemistry (OCB) Program and the North American Carbon Program (NACP) to synthesize existing data and improve quantitative assessments of the North American carbon budget.
    Description: The authors of this science plan wish to acknowledge the generous support of NASA (NNX10AU78G) and NSF (OCE-1107285) for all of the CCARS activities, including a kickoff meeting (December 2010), a series of regional workshops (Atlantic coast, Gulf of Mexico, Pacific coast), and the final community workshop (August 2014).
    Repository Name: Woods Hole Open Access Server
    Type: Working Paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Dataset: Underway POM
    Description: Particulate organic matter data set and added temperature and salinity from samples collected using ship’s surface underway system taken on board of the R/V Oceanus OC1701A, OC1611B, OC1603B, OC1602A, OC1601A in the Oregon Coast (47-43 N, 126-124 W) from 2016 to 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/817952
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459480
    Keywords: Surface Waters ; Particulate Organic Matter ; chlorophyll ; California Current ; Oregon Margin
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...