GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Spektrum der Wissenschaft, Heidelberg : Spektrum-der-Wiss.-Verl.-Ges., 1978, (2005), 6, Seite 16-20, 0170-2971
    In: year:2005
    In: number:6
    In: pages:16-20
    In: extent:3
    Type of Medium: Article
    Pages: 3 , Zahlr. Ill.
    ISSN: 0170-2971
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (74 Seiten = 3,4 MB) , Illustrationen, Graphen
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (89 Seiten = 4 MB) , Graphen, Karten
    Edition: 2021
    Language: German
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: Online-Ressource (133 Seiten, 6 MB) , Illustrationen, Graphen, Karten
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Oceanography. ; Electronic books.
    Description / Table of Contents: This concise introduction to the core fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics presents in addition a comprehensive approach to large-scale ocean circulation theory.
    Type of Medium: Online Resource
    Pages: 1 online resource (717 pages)
    Edition: 1st ed.
    ISBN: 9783642234507
    DDC: 551.462
    Language: English
    Note: Intro -- List of Symbols -- Part I Fundamental Laws -- 1 Preliminaries -- - -- 1.1 Flow Kinematics -- 1.1.1 Lagrangian and Eulerian Representation -- 1.1.2 Deformation and Rotation -- 1.2 Thermodynamics of Sea Water -- 1.2.1 Salt Concentration and Salinity -- 1.2.2 Additive State Variables -- 1.2.3 First Law of Thermodynamics -- 1.2.4 Second Law of Thermodynamics -- 1.2.5 Thermodynamic Potentials -- 1.2.6 Equation of State -- 1.2.7 Specific Heat -- 2 Conservation Laws for Moving Fluids -- - -- 2.1 General Form of Conservation Equations -- 2.2 Mass Conservation -- 2.2.1 Total Mass and Salt Conservation Equation -- 2.2.2 Boundary Conditions for the Fluxes of Total Mass and Salt -- 2.3 Conservation of Momentum -- 2.3.1 Stresses, Pressure and Frictional Forces -- 2.3.2 Boundary Condition for the Momentum Flux -- 2.3.3 Conservation Equations on the Rotating Earth -- 2.3.4 The Force of Gravity on the Earth -- 2.4 Energy Conservation -- 2.4.1 Contributions to the Change of Energy in a Material Volume -- 2.4.2 Mechanical Energy -- 2.4.3 Internal Energy and Enthalpy -- 2.4.4 Total Energy and Total Enthalpy -- 2.4.5 Boundary Condition for the Enthalpy Flux -- 2.5 Entropy Budget -- 2.5.1 Entropy Sources and Flux-Gradient Relations -- 2.5.2 Onsager Relations -- 2.6 Temperature Equations -- 2.6.1 In-situ Temperature -- 2.6.2 Conservative Temperature -- 2.6.3 Potential Temperature -- 2.6.4 Conservative Temperature as a State Variable -- 2.7 Density Variables -- 2.7.1 Potential Density -- 2.7.2 Neutral Surface Elements -- 2.8 Molecular and Turbulent Transports -- 2.8.1 Magnitude of Molecular Transports -- 2.8.2 Reynolds and Hesselberg Averaging -- 2.9 The State of Rest -- 2.9.1 Hydrostatic Balance -- 2.9.2 Static Stability -- 2.10 * Some Differences to Atmospheric Thermodynamics -- 2.10.1 Differences in Thermodynamics -- 2.10.2 Differences in Conservation Laws. , 2.11 Vorticity -- 2.11.1 Kinematical Properties -- 2.11.2 Dynamical Properties -- 2.11.3 Ertel's Potential Vorticity -- 2.12 * Lagrangian Concepts in Fluid Mechanics -- 2.12.1 Incompressible Fluid -- 2.12.2 Compressible Isentropic Fluid -- 2.12.3 Rotating Fluid with Gravity -- 2.12.4 Rotating Stratified Fluid -- 2.12.5 A Variational Principle for Eulerian Coordinates -- Part II Common Approximations -- 3 Approximations Derived from Mode Filtering -- - -- 3.1 A Prognostic Equation for the Pressure -- 3.2 Linear Waves -- 3.3 Filtering of Modes -- 4 Approximations Relating to Density Changes and Geometric Conditions -- - -- 4.1 Approximations Involving Density -- 4.1.1 Inelastic Approximation -- 4.1.2 Boussinesq Approximation -- 4.1.3 Dynamical Role of Sea Water Compressibility -- 4.1.4 Energetics in the Boussinesq Approximation -- 4.1.5 Potential Vorticity in the Boussinesq Approximation -- 4.1.6 Full Incompressibility and Combination of Salt and Heat Budgets -- 4.2 Shallow Water Approximation -- 4.2.1 Oblate Spheroidal Coordinates -- 4.2.2 Spherical Approximation -- 4.2.3 Thin-Shell Approximation -- 4.2.4 Small Aspect Ratio -- 4.2.5 Primitive Equations -- 4.2.6 Energetics and Potential Vorticity in the Shallow Water Approximation -- 5 Geostrophic and Quasi-Geostrophic Motions -- - -- 5.1 Geostrophic Scaling -- 5.2 Quasi-Geostrophic Approximation -- 5.2.1 Expansion for Small Parameters -- 5.2.2 Quasi-Geostrophic Vorticity Equation -- 5.2.3 Quasi-Geostrophic Potential Vorticity -- 5.2.4 Boundary Conditions -- 5.2.5 Energetics of Quasi-Geostrophic Motions -- 5.2.6 Available Potential Energy -- 5.3 Planetary-Scale Geostrophic Motions -- 5.3.1 The M-Representation -- 5.3.2 Thermal Wind-Equations -- 5.3.3 Planetary Ideal Fluid Equations -- Part III Ocean Waves -- 6 Sound Waves -- - -- 6.1 Approximations and Perturbation Expansion -- 6.2 Plane Waves. , 6.2.1 Group Velocity I: Interference of Waves -- 6.2.2 Energy Conservation I: Kinetic and Elastic Energy -- 6.2.3 Sound Waves in a Mean Current -- 6.3 Propagation in a Variable Environment: WKBJ Approximation -- 6.3.1 General Wave Kinematics -- 6.3.2 Group Velocity II: Rays and Wave Packages -- 6.3.3 Energy Conservation II: Energy Flux and Group Velocity -- 6.3.4 Pathways of Sound Wave Propagation in the Ocean -- 7 Gravity Waves -- - -- 7.1 Governing Equations -- 7.2 Plane Gravity Waves -- 7.2.1 Propagation Characteristics -- 7.2.2 Energy Conservation -- 7.3 Propagation in Variable Stratification -- 7.3.1 WKBJ Approximation for Internal Waves -- 7.3.2 Turning Points -- 7.4 The Influence of Boundaries -- 7.4.1 Reflection at a Plane Interface -- 7.4.2 Reflection at a Sloping Bottom -- 7.4.3 Vertical Modes -- 7.4.4 Accuracy of the Rigid-Lid Condition -- 7.5 Surface Waves -- 7.6 Group Velocity III: Initial Value Problems and Stationary Phase Method -- 7.7 Influence of a Mean Flow -- 7.7.1 Critical Layer Absorption -- 7.7.2 Propagation in a Geostrophic Current -- 7.7.3 Stability of Shear Flows -- 8 Long Waves -- - -- 8.1 Long Gravity Waves -- 8.1.1 Barotropic and Baroclinic Modes -- 8.1.2 Dispersion Relation and Group Velocity -- 8.1.3 Geostrophic Adjustment -- 8.1.4 Influence of Horizontal Boundaries -- 8.1.5 Kelvin Waves -- 8.1.6 Hydraulic Control: Wave Propagation and Nonlinearity -- 8.2 Planetary Waves in Midlatitudes -- 8.2.1 Propagation Characteristics -- 8.2.2 Energy of Planetary Waves -- 8.2.3 Reflection at Meridional Boundaries -- 8.2.4 Topographic-Planetary Waves -- 8.2.5 Stationary Rossby Waves in a Baroclinic Flow over a Ridge -- 8.2.6 Spin-up of the Wind-Driven Basin Circulation -- 8.3 Equatorial Waves -- 8.3.1 Refraction due to Variations of the Coriolis Parameter -- 8.3.2 Equation for the Meridional Velocity. , 8.3.3 Meridional Eigenfunctions -- 8.3.4 Wave Solutions -- 8.3.5 Equatorial Kelvin Waves -- 8.3.6 Yanai Waves -- 8.3.7 Equatorial Rossby and Gravity Waves -- 8.3.8 Reflection at Meridional Boundaries -- 8.4 The Oceanic Waveguide -- 8.5 Influence of a Mean Flow on Planetary Waves -- 8.5.1 Modification of the Doppler Shift -- 8.5.2 Energy Transfer Between Waves and Mean Flow -- 8.5.3 Conditions for Instability -- 8.5.4 Energetics of Parcel Exchanges -- 9 * Lagrangian Theory of Ocean Waves -- - -- 9.1 Sound Waves as Example -- 9.2 Adiabatic Invariants -- 9.3 Variational Approach to Wave Trains -- 9.4 A Rigorous Derivation -- 9.5 Rossby Waves and Internal Gravity Waves as Examples -- 9.6 Wave-Wave Interactions -- 9.6.1 Resonant Wave Triads -- 9.6.2 Interaction Theory for Random Wave Fields -- 10 Forced Waves -- - -- 10.1 The Forcing Functions of Long Waves -- 10.2 Forced Midlatitude Waves -- 10.3 Forced Equatorial Waves -- 10.4 * Energetics of a Random Gravity Wave Field -- 10.4.1 Generation Processes -- 10.4.2 Dissipation Mechanisms -- 10.4.3 Some Prototype Balances -- 10.4.4 Resonant Transfer -- 10.4.5 The Link to Mixing -- Part IV Oceanic Turbulence and Eddies -- 11 Small-Scale Turbulence -- - -- 11.1 Kolmogorov's Theory of Homogeneous Turbulence -- 11.1.1 Isotropy -- 11.1.2 Momentum and Kinetic Energy in Homogeneous Turbulence -- 11.1.3 Large and Small Length Scales -- 11.1.4 Equilibrium Range and Inertial Subrange -- 11.2 Turbulent Mixing -- 11.2.1 Heuristic Approaches -- 11.2.2 Turbulent Diffusion in the Lagrangian Reference System -- 11.2.3 Eulerian Diffusion by Small-Scale Turbulence -- 11.3 Inhomogeneous Three-Dimensional Turbulence -- 11.3.1 Energetic Constraints -- 11.3.2 Turbulence Models for the Surface Boundary Layer -- 11.3.3 Turbulence in the Ocean Interior -- 12 Geostrophic Turbulence -- - -- 12.1 Homogeneous Turbulence in Two Dimensions. , 12.1.1 Inverse Energy Cascade -- 12.1.2 A Numerical Example of Two-Dimensional Turbulence -- 12.1.3 Equilibrium Range -- 12.2 Mesoscale Eddies and Their Impact on the Mean Flow -- 12.2.1 Energetics of Mesoscale Eddies and the Lorenz Cycle -- 12.2.2 Isopycnal Mixing Tensor -- 12.2.3 Transformed Eulerian Mean -- 12.2.4 Gent and McWilliams Parameterization and the Bolus Velocity -- 12.2.5 Isopycnal Mixing and Transformed Eulerian Mean -- 12.2.6 * Mesoscale Eddy Effects in the Momentum Equation -- 12.3 * Alternative Averaging Frameworks -- 12.3.1 Temporal Residual Mean -- 12.3.2 Rotational Eddy Fluxes -- 12.3.3 Generalized Osborn-Cox Relation -- 12.3.4 Generalized Lagrangian Mean -- 12.3.5 Semi-Lagrangian (Isopycnal) Mean -- 12.3.6 Relating Lagrangian, Eulerian, and Semi-Lagrangian Mean -- Part V Aspects of Ocean Circulation Theory -- 13 Forcing of the Ocean -- - -- 13.1 Bulk Formulae as Boundary Conditions -- 13.2 Simplified Boundary Conditions -- 14 The Wind-Driven Circulation -- - -- 14.1 The Flat-Bottom Wind-Driven Circulation -- 14.1.1 The Elementary Current System -- 14.1.2 Ekman Spiral -- 14.1.3 Ekman Transport -- 14.1.4 Ekman Pumping -- 14.1.5 Equilibrium Wind-Driven Model Regimes -- 14.1.6 The Western Boundary Current -- 14.2 The Role of Stratification and Topography -- 14.2.1 The JEBAR Term -- 14.2.2 The f/h Contours -- 14.2.3 Sverdrup's Catastrophe -- 14.2.4 The Bottom Pressure Torque -- 14.2.5 A Realistic Application of the BARBI Model -- 14.2.6 The Baroclinic Stommel Equation -- 14.3 Main Thermocline Dynamics -- 14.3.1 Scaling Considerations -- 14.3.2 Similarity Solutions -- 14.3.3 Ideal Fluid Solutions -- 14.3.4 Thermocline Ventilation in an Isopycnal Layer Model -- 14.3.5 Circulation in Unventilated Regions -- 15 The Meridional Overturning of the Oceans -- - -- 15.1 Basic Ingredients of the Meridional Overturning. , 15.1.1 Water Masses of the Ocean.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Book
    Book
    Berlin : Springer
    Keywords: Ocean circulation ; Ocean-atmosphere interaction ; Meeresströmung ; Meereskunde ; Dynamik
    Type of Medium: Book
    Pages: XXIII, 704 S. , Ill., graph. Darst. , 26 cm
    ISBN: 9783662506059 , 9783642234491 , 3642234496
    RVK:
    Language: English
    Note: Enth. Literaturangaben und Index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Hamburg : Staats- und Universitätsbibliothek Hamburg
    Keywords: Hochschulschrift ; Golf von Mexiko ; Meeresströmung
    Type of Medium: Online Resource
    Pages: Online-Ressource
    DDC: 910
    Language: English
    Note: Hamburg, Univ. Hamburg, FB Geowiss., Diss., 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Energy transfer-Mathematical models. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (323 pages)
    Edition: 1st ed.
    ISBN: 9783030057046
    Series Statement: Mathematics of Planet Earth Series ; v.1
    DDC: 541.22
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 Multi-scale Methods for Geophysical Flows -- 1.1 Introduction -- 1.2 The Governing Equations -- 1.2.1 Rotating Boussinesq Equations -- 1.2.2 Imbalance Variables -- 1.2.3 Mid-latitude Scalings -- 1.2.4 Hydrostatic Approximation -- 1.2.5 The Quasi-geostrophic Approximation on the β-plane -- 1.2.6 Rotating Shallow Water Equations -- 1.2.7 Geostrophic Scalings -- 1.2.8 Equatorial Scalings -- 1.3 Variational Principles and Hamiltonian Mechanics -- 1.3.1 Variational Principles -- 1.3.2 Variational Model Reduction -- 1.3.3 Poisson Formulation -- 1.3.4 Nambu Formulation -- 1.4 Dissipation, Turbulence, and Nonlinear Waves -- 1.4.1 Viscosity and Dissipation -- 1.4.2 Nonlinear Waves and Dynamical Systems Methods -- 1.5 Stochastic Model Reduction -- 1.5.1 Basic Setup -- 1.5.2 Slow Dynamics via the Kolmogorov Backward Equation -- 1.5.3 Direct Averaging -- 1.6 Outlook -- References -- 2 The Interior Energy Pathway: Inertia-Gravity Wave Emission by Oceanic Flows -- 2.1 Introduction -- 2.2 Rotating Shallow Water Equations and Spontaneous Emission -- 2.2.1 Shallow Water on the f-Plane -- 2.2.2 Spontaneous Emission -- 2.2.3 Beyond Shallow Water -- 2.3 Ray Equations and Wave Capture -- 2.4 Interactions Between IGWs and Density Fronts -- 2.4.1 Wave Capture in Frontal Strain -- 2.4.2 Role of IGWs in Frontal Geostrophic Adjustment -- 2.5 Diagnostics -- 2.5.1 Characterization of Flow Regimes via the Rossby Number -- 2.5.2 Linear Filters -- 2.5.3 Optimal Potential Vorticity Balance -- 2.5.4 A Simple Model for Optimal Balance -- 2.6 High-resolution Ocean General Circulation Models as a Novel Tool for Studying Spontaneous Emission -- 2.7 Discussion -- References -- 3 The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere. , 3.1 Internal Waves in Ocean and Atmosphere -- 3.2 The IDEMIX Model -- 3.2.1 Details of the Oceanic IDEMIX -- 3.2.2 The IDEMIX Concept Applied to Atmospheric Gravity Waves -- 3.3 Oceanic Processes in Present and Future IDEMIX -- 3.3.1 Including Energy Transfers from Mesoscale Eddies to Internal Waves -- 3.3.2 Including Wave-Mean Flow Interaction -- 3.3.3 Including Anisotropic Tidal Forcing -- 3.3.4 Including High-Frequency Compartments -- 3.3.5 Evaluation with Available Observations -- 3.4 Atmospheric Processes in IDEMIX -- 3.5 Summary -- References -- 4 Observations and Models of Low-Mode Internal Waves in the Ocean -- 4.1 Introduction -- 4.2 Numerical Modeling -- 4.2.1 Wind -- 4.2.2 Tides -- 4.3 Dissipation -- 4.4 Observations -- 4.4.1 Satellite Altimetry -- 4.4.2 Shipboard Observations -- 4.4.3 Moorings -- 4.5 Summary and Outlook -- References -- 5 Toward Consistent Subgrid Momentum Closures in Ocean Models -- 5.1 Introduction -- 5.2 Subgrid Momentum Closures -- 5.3 Quasigeostrophic Turbulence and Ocean Eddies -- 5.3.1 Two-Dimensional Turbulence -- 5.3.2 Two-Layer Geostrophic Flows -- 5.3.3 Continuously Stratified and Surface QG Dynamics -- 5.3.4 Ocean Models and Observational Evidence -- 5.4 Energy Backscatter -- 5.4.1 Models with Scalar Subgrid Energy Budget -- 5.4.2 Stochastic Superparameterizations -- 5.5 Other Closures -- 5.5.1 The Mana-Zanna Parameterization of Ocean Mesoscale Eddies -- 5.5.2 α-Models -- 5.6 Concluding Remarks -- References -- 6 Diagnosing and Parameterizing the Effects of Oceanic Eddies -- 6.1 Introduction -- 6.1.1 Isopycnal and Diapycnal Diffusion -- 6.1.2 Skew Diffusion -- 6.1.3 Diagnosing and Parameterizing the Diffusivities -- 6.2 Eddy Diffusivity Diagnostics -- 6.2.1 Lagrangian Particle Dispersion -- 6.2.2 Quasigeostrophic Linear Stability Analysis -- 6.2.3 Diffusivities from Eulerian Eddy Fluxes. , 6.3 Eddy Diffusivity Estimates in the Global Ocean -- 6.4 Limits of the Eddy Diffusion Model and Anomalous Diffusion -- 6.5 Eddy Diffusivity Parameterization -- 6.5.1 EKE Equation -- 6.6 Conclusions -- References -- 7 Entropy Production in Turbulence Parameterizations -- 7.1 The Numerically Modeled Atmosphere as a Forced-Dissipative System -- 7.2 The Entropy Budget Equation in Numerical Models of the Atmosphere -- 7.3 Moisture and Precipitation Fluxes -- 7.4 Thermal Fluxes -- 7.5 Momentum Fluxes -- 7.6 Fluctuation Theorem -- 7.7 Applicability of the Fluctuation Theorem in Geophysical Flows -- References -- 8 Reducing Spurious Diapycnal Mixing in Ocean Models -- 8.1 Introduction -- 8.2 Diagnosing Spurious Mixing -- 8.2.1 An Analytical Example -- 8.2.2 Variance Decay as a Measure for Mixing and Dissipation -- 8.2.3 Discrete Variance Decay -- 8.2.4 Applications -- 8.3 Arbitrary Lagrangian Eulerian Vertical Coordinate -- 8.3.1 tildez-Vertical Coordinate and its Effect on Spurious Mixing -- 8.3.2 Additional Techniques for Adaptive Vertical Model Layers -- 8.4 Advection Algorithms Stabilized with Isoneutral Mixing -- 8.5 ADER High Order Flux Evaluation and WENO Reconstruction -- 8.5.1 The Generalized Riemann Problem -- 8.5.2 Kernel-Based WENO Reconstruction -- 8.6 Discussion and Conclusions -- References -- 9 Diffuse Interface Approaches in Atmosphere and Ocean-Modeling and Numerical Implementation -- 9.1 Introduction -- 9.2 Diffuse Interface Approach -- 9.2.1 Notation -- 9.2.2 The Mathematical Model -- 9.3 Discretization -- 9.3.1 The Temporal Discretization -- 9.3.2 The Spatial Discretization and Energy Inequalities -- 9.3.3 A posteriori Error Estimation -- 9.4 Numerics -- 9.5 Outlook on the Direction of Research -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Hochschulschrift ; Antarktischer Zirkumpolar-Strom
    Type of Medium: Online Resource
    Pages: Online-Ressource
    DDC: 550
    Language: English
    Note: Kiel, Univ., Diss., 2012
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 113(2008), 2169-9291
    In: volume:113
    In: year:2008
    In: extent:12
    Description / Table of Contents: The spatial and temporal distributions of tropical instability waves (TIWs) in the Atlantic Ocean are investigated using a combination of current observations with moored instruments deployed at the equator at 23°W and a realistic eddy-resolving (1/12ʿ) general circulation model of the Atlantic Ocean. The meridional and vertical shears of the zonal current system contribute to the eddy production rates and thus to the generation of TIWs in the central tropical Atlantic Ocean. In the Southern Hemisphere, TIWs are forced only by baroclinic instability associated with the vertical shear of the central part of the South Equatorial Current (SEC). In the Northern Hemisphere, baroclinic instability due to the vertical shear of the northern SEC (nSEC) as well as barotropic instabilities due to horizontal shears of the Equatorial Undercurrent (EUC)/nSEC and nSEC/North Equatorial Countercurrent (NECC) contribute to the generation of the TIWs. Since seasonal changes of the instability production rates related to the EUC/nSEC are comparable low while the rates related to the nSEC/NECC are high, we suggest that the seasonality of the NECC dominates the seasonal modulation of the TIWs.
    Type of Medium: Online Resource
    Pages: 12 , graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...