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Zusammenfassung

Diese Dissertation besteht aus drei Forschungsartikeln. Der erste Forschungsartikel behan-
delt entscheidende Fragen der gegenwértigen Klimawandel-Diskussion: Wie reagiert die
meridionale Umwélzzirkulation (MOC) des Siidlichen Ozeans (SO) auf dekadisch-skalige
Trends im Windstress-Antrieb? Inwieweit ist es den gegenwartigen Parameterisierungen
von meso-skaligen Wirbeln moglich, die entsprechenden Veranderungen im Wirbelfeld in
Klimamodellen wiederzugeben? Die Ergebnisse eines idealisierten Modells des SO, fiir
welches sowohl Wirbel zulassende wie parameterisierte Konfigurationen aufgesetzt wur-
den, zeigen, dass der Wirbel-getriebene Anteil der MOC dem Wind-getriebenen Anteil im
Allgemeinen entgegengesetzt ist und dass die Zunahme der MOC mit starker werdenden
Winden abnimmt. Daraus ergibt sich die Moglichkeit der volligen Unabhéngigkeit der
MOC des SO von Anderungen im Windstress. In der Wirbel zulassenden Modellkonfi-
guration ist jedoch fiir mafBlig starke Winde noch eine signifikante Zunahme der MOC zu
erkennen. Die parameterisierten Modellkonfigurationen kénnen die MOC fiir bestimmte
Windstresse reproduzieren, jedoch wird die Abhangigkeit der MOC vom Windstress durch
jede der betrachteten Parameterisierungen tiberschatzt. Die Ergebnisse zeigen: Um die
richtige Abhangigkeit der MOC vom Windstress zu reproduzieren, ist es notwendig, die
korrekte Sensitivitdt des Wirbelfeldes in Klimamodelle einzubeziehen. Den aktuellen Pa-

rameterisierungen von meso-skaligen Wirbeln gelingt dies jedoch nur ansatzweise.

Die Forschungsartikel zwei und drei stehen in einer konzeptionelleren Perspektive und
konzentrieren sich auf eine der verbreitetsten Diagnostiken der MOC: das Konzept der
MOC Stromfunktion. Der zweite Forschungsartikel klart die Frage: Ist es moglich, eine
MOC Stromfunktion zu definieren, welche génzlich frei von stehenden Wirbeln ist? Es
wird gezeigt, dass eine MOC Stromfunktion mit einem exakt verschwindenden stehen-
den Wirbel-Anteil dadurch erhalten wird, dass die zonale Integration entlang von tiefen-
abhéangigen horizontalen Isolinien der zeitlich gemittelten Dichte ausgefiihrt wird. Dagegen
fithrt die Integration entlang von zeitlich gemittelten geostrophischen Stromlinien, welche

tiblicherweise zur Neutralisierung des stehenden Wirbel-Anteils benutzt wird, im Allge-
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Zusammenfassung

meinen nur zu einer MOC Stromfunktion mit einem reduzierten stehenden Wirbel-Anteil.

Im letzten, dritten Forschungsartikel werden die zwei gebrauchlichsten Ansatze zur
Berechnung von MOC Stromfunktionen direkt im Euler-Raum betrachtet: die Reihenent-
wicklung der residuellen Wirbelstromfunktion und die Reihenentwicklung der quasi-Stokes
Stromfunktion. Unter Benutzung der Resultate von verschiedenen idealisierten Wirbel
zulassenden zonalen Kanalmodellen werden die beiden Reihenentwicklungen bis zur drit-
ten Ordnung der Dichtestérungen verglichen. Beide Stromfunktionen kénnen in den Mo-
dellkonfigurationen mit flachem Boden im Ozeaninneren angemessen durch die fithrenden
Terme der ersten oder zweiten Ordnung angenahert werden, wobei jedoch auch Terme drit-
ter Ordnung die implizierte Zirkulation im Inneren noch signifikant beeinflussen. Deswei-
teren sind die Unterschiede im Ozeaninneren zwischen den beiden Reihenentwicklungen
bis zur dritten Ordnung klein. Dagegen unterscheiden sich die fithrenden Terme in den
Oberflachen- und Bodenrandbereichen deutlich. In solchen Regionen sind die ersten Terme
der beiden Reihenentwicklungen von alternierendem Vorzeichen und zunehmendem Be-
trag, so dass die Ndherungsausdriicke dort versagen. In realistischeren Modellkonfigu-
rationen mit signifikanten topographischen Gebilden ergeben sich auch im Ozeaninneren
physikalisch inkonsistente Rezirkulationszellen, welche nicht durch Terme nachst hoherer
Ordnung reduziert werden. Folglich ist die Diagnose der MOC aus empirischen Daten
oder Resultaten realistischer Modelle durch Naherungen der residuellen Wirbelstromfunk-
tion oder der quasi-Stokes Stromfunktion vorsichtig zu interpretieren, wenn nicht sogar zu

verwerfen.
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Summary

This PhD thesis consists of three research papers. The first research paper addresses
crucial issues of the present climate change debate, namely the response of the meridional
overturning circulation (MOC) of the Southern Ocean (SO) to decadal-scale trends in wind
stress forcing, and the ability of up-to-date meso-scale eddy parameterisations to represent
the corresponding changes in the eddy field in climate models. Results from an idealised
SO model in both eddy-permitting and parameterised configurations show that the MOC
is characterised by an eddy-driven part which generally opposes the wind-driven part and
that the increase of the MOC diminishes with amplifying winds, with the possibility that
the MOC in the SO may become completely insensitive to wind stress changes. However,
for moderate wind stress, the MOC is still significantly increasing in the eddy-permitting
model configuration. The parameterisations are able to reproduce the MOC for certain
wind stresses, but all parameterisations overestimate the sensitivity of the MOC on wind
stress. The results show that it is indispensable to incorporate the correct sensitivity of
eddy field into climate models in order to reproduce the correct sensitivity of the MOC
to wind stress and that up-to-date meso-scale eddy parameterisations are only partially

successful.

The second and third research papers are guided by a more conceptual perspective
and focus on one of the most common diagnostics of the MOC: the concept of the MOC
streamfunction. The second research paper clarifies the question: Is it possible to define a
MOC streamfunction completely void of standing eddies? It is shown that the construction
of a MOC streamfunction with an exactly vanishing standing eddy part has to be performed
by zonal integration along depth-dependent horizontal isolines of time-mean density. In
contrast, zonal integration along time-mean geostrophic streamlines, typically applied to
neutralise the impact of standing eddies, generally only leads to a MOC streamfunction

with a reduced standing eddy part.

Finally, the third research paper considers the two most common approaches to calculat-

ing MOC streamfunctions directly in Eulerian space: the series expansion of the residual-
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Summary

mean eddy streamfunction and the series expansion of the quasi-Stokes streamfunction.
Using several idealised eddy-permitting zonal channel model experiments, the two series
are compared up to third order in buoyancy perturbation. In model configurations with
flat bottom, both streamfunctions may be well approximated by the first one or two leading
order terms in the ocean interior, although terms up to third order still significantly impact
the implied interior circulations. Further, differences in both series expansions up to third
order remain small here. Near surface and bottom boundaries, on the other hand, the
leading order terms differ and are initially of alternating sign and of increasing magnitude
such that the low order approximate expressions break down there. In more realistic model
configurations with significant topographic features, physically inconsistent recirculation
cells also appear in the ocean interior and are not effectively reduced by the next higher
order terms. Therefore, the diagnosis of the MOC from empirical data or realistic model
results via approximations of the series expansion of the residual-mean eddy streamfunc-
tion or the series expansion of the quasi-Stokes streamfunction must be treated with care

or even completely ruled out.
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1 Introduction

1.1 Climate change

During the last two decades, the topic climate change has represented a global social dis-
course! and has served as a primary motivation for research in environmental sciences. A
consensus has been reached in the scientific community (Oreskes, 2004) on an anthropogenic
climate change over the past century: As reviewed and assessed by the IPCC (2007), a
definite warming of the climate system since the mid-20th century is obvious from observa-
tions of increases in global average air and ocean temperatures, broad melting of snow and
ice, and rising global average sea level. Additionally, global atmospheric concentrations of
greenhouse gases have increased significantly (primarily carbon dioxide (C'Os), methane
and nitrous oxide) as a result of human activities since the mid-18th century. At present
time, they by far exceed pre-industrial values determined from polar ice cores dating back
650,000 years. It is very likely that this observed increase in anthropogenic greenhouse
gas concentrations represents the main cause for the changes in the energy balance of the
climate system which led to the observed warming. The primary sources of the increased
global atmospheric C'O, concentration since the pre-industrial period result from fossil fuel
use and land use change, while those of methane and nitrous oxide are primarily due to
agriculture.

Beside the observed increase in global average temperatures, further probably human-
induced long-term and regional-scale changes in climate have been observed. These include
strongly increased Arctic temperatures and decreased Arctic sea ice extent, widespread
changes in precipitation, ocean salinity, extreme weather events and wind patterns. Re-
garding other aspects of climate, like the Antarctic sea ice extent or the meridional over-
turning circulation (MOC) of the global ocean, there is insufficient evidence to determine

whether trends exist. Moreover, changes in key processes that drive global and regional

! The Intergovernmental Panel on Climate Change (IPCC) was first established in 1988 and in 1992 the
UN Framework Convention on Climate Change (UNFCCC) was adopted.
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climate changes are hardly clarified (e.g. El Nino-Southern Oscillation (ENSO), North
Atlantic oscillation (NAO), Southern Annular Mode (SAM)) and require further investi-

gation.

1.2 The ocean’s role in a changing climate system

The ocean as a key component of the climate system? plays a major role also in anthro-
pogenic climate change (Siedler et al., 2001; TPCC, 2007):

First, due to the large heat capacity of the ocean, the time scales of climate change are
largely controlled by ocean heat storage. The ocean is able to accumulate heat largely
in accord with the radiation imbalance resulting from the increasing concentrations of
greenhouse gases and, hence, delays the full global warming. Correspondingly, observations
since 1961 show that the average temperature of the global ocean has increased to depths
of at least 3000 m and that the increase in ocean heat content (see Fig. 1.1) accounts for
more than 90% of the increase in heat content of the earth system (mainly stored in the
upper 700 m of the ocean). IPCC (2007) model scenarios show that even if all radiative
forcing agents were held constant at present levels, a significant further warming trend
would occur mainly due to the slow response of the ocean.

Second, sea-level rise represents a major argument in the political debates on anthro-
pogenic climate change. It endangers the coastal areas where most of the world population
lives, especially those regions where accompanying coastal erosion, flooding and increases
in storm surges may occur. Observations suggest that global average sea-level rose at an
average rate of 1.8 £ 0.5 mm per year over 1961 to 2003. The total 20th-century rise is
estimated to be 0.17 4+ 0.05m, although the observed sea-level change shows substantial
spatial variation due to geographically non-uniform changes in temperature, salinity, ocean
circulation and surface atmospheric pressure. On decadal and longer time scales, global
average sea-level change results from changes in the volume of water in the global ocean
as a consequence of changes in the density or the total mass of the ocean. The dominant
cause of global sea-level rise over the period 1993 to 2003 is estimated to be thermal expan-

sion of seawater (i.e. a change in density) due to large-scale ocean warming. Additional

2 About 71% of the earth’s surface is covered by the different components of the ocean (including up to
6% coverage by sea ice). Therefore, absorption of solar energy, which drives the earth’s climate system,
is inter alia dominated by the ocean. In general, the ocean’s important role in the climate system
results from its ability to store and transport large amounts of heat, freshwater, and radiatively active
gases around the globe and exchange these with the atmosphere.
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Figure 1.1: Empirical estimate of the world ocean heat content for 1955-2008 from Levitus
et al. (2009).

factors contributing to recent sea-level rise are related to the increase of the total mass of
the ocean and include the melting of glaciers and ice caps, changes in land water storage,
and ice mass losses from the ice sheets of Greenland and Antarctica. Sea-level rise due to
thermal expansion is expected to continue for many centuries, due to the time required to
transport heat into the deep ocean. IPCC (2007) models actually project global sea-level
to rise during the 21st century at a greater rate than during 1961 to 2003, with the main
source being thermal expansion.

Third, changes in the ocean’s regional pattern of heat transport and absorption, resulting
from the ocean not being in balance with the changed radiative forcing, will lead to sig-
nificant changes in regional climate. Thus precipitation pattern and possibly main modes
of climate variability relying on ocean-atmosphere coupling (e.g. ENSO) will change. Ad-
ditionally, climate variability related to the dominant modes of large-scale atmospheric
variability (e.g. NAO, SAM) may be influenced.

Fourth, changes in the formation of deep watermasses at high latitudes in the North At-
lantic and the Southern Ocean could lead to changes in the global MOC (see Fig. 1.2) and

a major rearrangement of global climate. IPCC (2007) climate model simulations suggest
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Figure 1.2: Strongly simplified sketch of the global overturning circulation system from
Kuhlbrodt et al. (2007). The circulation that leads to a continuous renewal
of the waters in the deep ocean by the sinking of dense waters to the abyssal
ocean at high latitudes in the North Atlantic (L, N) and near Antarctica (W,
R), and by widespread upwelling of these watermasses elsewhere is called global
MOC. Wind-driven upwelling occurs along the Antarctic Circumpolar Current
(ACC). The MOC is considered to be crucial in the climate system e.g. due to
its role in the poleward heat transport and the ventilation of the deep ocean.

that the MOC transport might gradually decrease in the 21st century as a consequence
of anthropogenic warming and additional freshening in the North Atlantic. However, ob-
servations of changes in MOC transport, water properties and watermass formation are
ambiguous about changes in the MOC strength due to decadal variability, which obscures
the long-term trend, and due to inadequate long-term observations. Therefore, over the
last 50 years no clear evidence for a trend in the mean strength of the MOC could be

diagnosed.

Fifth, changes in the ocean uptake or release of radiatively active gases such as C'Oy can
directly feed back to the earth’s climate system. The ocean is a major sink for anthro-
pogenic C'Oy and it is estimated to store about one third of the C'O; released annually

through human activities (around 2 GtC/yr). While the rate at which the ocean stores
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COy increases as the atmospheric concentration rises, how and where the ocean takes up
C O, depends on the evolution of ocean conditions (e.g. temperature and salinity, alka-
linity, vertical stability, circulation and biological processes) which are influenced by, and
are influencing, a changing atmosphere. Factors limiting the oceanic uptake of CO, are
the rate at which the gas can be transferred across the air-sea interface® and the rate at
which carbon is transported from the surface layer to the deep ocean. Since ocean currents
can transport C'O, over large distances, the location of storage of carbon may be distant
from the site of air-sea exchange (see Fig. 1.3). In particular, because of the limited rate
of vertical transport in the ocean, more than half of the anthropogenic carbon can still
be found in the upper 400 m and is absent in most of the deep ocean. In general, there
are three principal mechanisms by which dissolved gases such as CO, (as well as heat and
freshwater) may be transported by the ocean: In the North Atlantic the overturning cir-
culation (related to deep convection) is considered to be the dominant mechanism, while
in the North Pacific the intense western boundary current related to the gyre circulation
represents the primary motor. Finally, in the Southern Ocean the time-variable ocean
eddies are suggested to be the dominant feature in the meridional tracer transport. The
focus of this PhD thesis lies on the Southern Ocean (SO), to which we turn in the next

section.

1.3 The Antarctic Circumpolar Current system

The SO is the region south of 30°S and connects the Atlantic, Indian and Pacific Oceans
via a circulation feature which is central in the ocean’s role in climate: the Antarctic
Circumpolar Current system. Its horizontal flow, the eastward flowing Antarctic Circum-
polar Current (ACC), is the largest ocean current on earth in terms of mass transport
(~ 130 — 140 Sv) and geographical extent (~ 24000km) and is often reaching to the bot-
tom and is therefore strongly influenced by bottom topography. The weaker flows in the
meridional-vertical plane constitute the southern component of the global MOC, where
deep waters ascend southward across the ACC, upwell to the surface at the poleward flank
of the ACC and then either travel equatorward and transform to intermediate and mode
water or move closer to Antarctica, transform to dense bottom water and propagate near

the bottom to the adjacent northern ocean basins. The upwelling, associated with strongly

3 The nonlinearity in carbon chemistry reduces the CO5 uptake capacity of water as its CO5 concentration
increases. Moreover, the ocean is able to take up more C'O5 at lower temperatures.
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Figure 1.3: (A) Column inventories and (B) air-sea fluxes of anthropogenic carbon sim-
ulated in an ocean-climate model by Caldeira and Duffy (2000). Maximum
air-sea fluxes of anthropogenic carbon into the Southern Ocean occur farther
south than maximum column inventories. Note that the column inventories are
in good agreement with empirical estimates e.g. by Sabine et al. (2004).

tilted surfaces of constant density in the meridional direction, connects the deep water-
masses of the world ocean to the surface and, hence, the southern MOC is of fundamental

importance for the meridional-vertical heat, freshwater and tracer transports and thus
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the corresponding large-scale budgets in the SO. In particular, the understanding of the
strength and variability of the MOC in the SO is mandatory to quantify the role of the SO
in the global carbon budgets and to predict future anthropogenic carbon uptake by the
ocean (Orr et al., 2001).

The ACC system is forced by both strong westerly winds and surface buoyancy fluxes
over the SO. Moreover, the absence of land barriers in the latitude band of Drake Passage
leads to dynamics which are distinct from those of the rest of the world ocean and with
eddies capturing a central role. In the SO, eddy-driven transports can be as large as mean
transports. Meso-scale eddies play an important role in determining the transport of the
ACC (Olbers et al., 2004) by transferring the stress exerted by the furious winds over the
SO into the deep ocean and finally to the solid earth (Munk and Palmén, 1951; Gille,
1997a; Stevens and Ivchenko, 1997). Additionally, the central role of eddies in vertical
momentum transport implies that they are also important for shaping the southern MOC,
i.e. the mass and tracer transport across the ACC in the SO, as discussed by e.g. Karsten
and Marshall (2002); Marshall and Radko (2003); Olbers and Visbeck (2005). Meso-scale
eddy activity affects or even controls the meridional transports in the SO across the ACC
and, hence, eddy-driven meridional tracer transports set the role of the SO as an oceanic
sink in the global carbon cycle. Consequently, the impact of meso-scale eddies has to be

adequately accounted for in ocean climate models.

1.4 Climate models and parameterisations

In ocean climate models, the meso-scale variability has to be adequately resolved or param-
eterised. The meso-scale eddy parameterisation by Gent and McWilliams (1990) (GM),
in which the so-called thickness diffusivity K has to be specified, is used to account for
such eddy-driven transports and is currently applied in almost any state-of-the-art ocean
climate model which does not resolve the vigorous eddy activity in the ocean*. Gent and
McWilliams (1990) and Gent et al. (1995) interpreted the GM parameterisation as diffusion
in the isopycnal layer thickness budget®, for which an effective (turbulent) diffusivity has

to be set. It is clear that the meridional mass and tracer transports are strongly affected by

4 See e.g. http://www-pemdi.llnl.gov/ipcc/model_documentation /ipcc_model_documentation.php.

5 More precisely, the GM scheme is founded by the maintenance of two properties: First, the moments of
the tracer should be preserved; in particular, the amount of fluid between two isopycnal surfaces should
be preserved. Hence, it is an adiabatic scheme. Second, the amount of available potential energy in
the flow should be reduced in order to mimic the effects of baroclinic instability.
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the choice of this thickness diffusivity, particularly in the SO where eddy-driven transports
are as large as mean transports. Consequently, pathways of the ACC, watermass struc-
tures and ventilation rates in the SO are indeed rather different using different values of
thickness diffusivities (England and Rahmstorf, 1998). It is therefore of crucial importance
for the quantification of the role of the SO in the climate system and the global carbon

cycle.

However, the value of thickness diffusivity in the SO, its magnitude, horizontal and
vertical variation, is poorly known so far. Because of the sparseness of observations of
interior meso-scale activity it appears to be difficult to estimate thickness diffusivity directly
from available observations, although there have been attempts in the SO (Phillips and
Rintoul, 2000; Marshall et al., 2006). Currently, constant values of approx. 1000 m?/s are
typically chosen, sometimes higher in the upper ocean and lower below the thermocline,
but it is clear that the thickness diffusivity should also have manifold spatial dependency
(Visbeck et al., 1997; Ferreira et al., 2005). A better empirical estimate of thickness
diffusivity is still needed in order to consistently model the SO with a non-eddy-resolving

ocean model using the GM parameterisation.

Furthermore, a consistent eddy closure is needed for coarse resolution ocean models
coupled to a climate model. Instead of prescribing fixed values of thickness diffusivity,
such a closure should be based on mean quantities predicted by the ocean model itself.
Such a closure is necessary in coupled climate models, since they are meant to be used under
different climates (including long term climate changes and shorter term climate variability
studies) and for which estimates of present thickness diffusivities are insufficient, since the

values of thickness diffusivity change under different climates.

Recently, a new flow-interactive meso-scale eddy closure for K was developed by Eden
and Greatbatch (2008) (EG). The closure consists of a prognostic equation for eddy kinetic
energy (EKE) that is integrated as an additional model variable of the non-eddy-resolving
model, and in which production, radiation and dissipation terms of the EKE budget are
parameterised based on the variables of the non-eddy-resolving model. The EKE and a
diagnostic eddy length scale are combined in a standard mixing length assumption for the
thickness diffusivity of the GM parameterisation, following Green (1970) who first proposed
the application of a mixing length approach for the eddy effect in geostrophic turbulence.
Based on an empirical analysis of eddy length scales from altimeter data and as estimated
from the simulation of an realistic eddy-permitting model, Eden (2007) found that the

minimum of the Rossby radius and Rhines scale yields the best choice.



1.5 The SO carbon sink and a possible Southern Hemisphere feedback mechanism

The EG closure was tested by Eden and Greatbatch (2008) by comparing the results
of a parameterised non-eddy-permitting model version of the SO with the results of the
corresponding eddy-permitting model version (Eden, 2006) and good agreement was found
in terms of magnitude and horizontal and vertical structure. Moreover, the EG closure
was compared to other closures by Eden et al. (2009a) and was shown to be superior
with respect to its performance in the SO. However, it is at present unclear if and how
the EG closure applies under changing climate conditions. Therefore, in the first research
paper of this PhD thesis the validity and the performance of the EG closure is assessed for

decadal-scale trends in the SO which are described in the following section.

1.5 The SO carbon sink and a possible Southern

Hemisphere feedback mechanism

Recent studies indicate that the SO is the largest sink of anthropogenic C'O,, together with
mid- to high-latitude regions in the North Atlantic (Gloor et al., 2003; Mikaloff Fletcher
et al., 2006). But only half of the anthropogenic C'O5 absorbed by the SO is stored there,
due to strong northward transport (Sabine et al., 2004; Mikaloff Fletcher et al., 2006)
(see Fig. 1.3). Hence, the understanding of the strength and variability of the MOC in
the SO is mandatory to quantify the role of the SO in the global carbon budgets and
to predict future anthropogenic carbon uptake by the ocean. In fact, the response of
the ACC system and the carbon sink in the SO to changes in wind stress and surface
buoyancy fluxes is under debate: Coming along with an observed decadal-scale warming of
the surface and also deep SO (Gille, 2002, 2008), a strong decadal scale trend of weakening
anthropogenic C'O, uptake by the SO was recently estimated from ocean model simulations
and atmospheric inversions by Le Quéré et al. (2007) and Lovenduski et al. (2007) with
considerable effects on global warming. Le Quéré et al. (2007) and other authors relate
the trend in the C'Oy sink in the SO to positive trends in the strength of the westerly
winds over the SO, the prevailing winds between the latitudes of 30°S and 60° S, during
recent decades (Thompson and Solomon, 2002), which are in turn related to an upward

trend in a large-scale atmospheric pattern known as the Southern Annular Mode (SAM?®)

6 Climate variability in the high-latitude SH is strongly related to the SAM, the dominant mode of large-
scale atmospheric variability in the SH extratropics. The structure and variability of the SAM results
mainly from the internal dynamics of the atmosphere and it is associated with synchronous pressure
anomalies of opposite sign in mid- and high-latitudes, and therefore reflects changes in the main belt of
subpolar westerly winds. The imprint of SAM variability on the SO system is observed as a coherent
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Figure 1.4: Seasonal values of the SAM index calculated from station data (updated by the
[PCC (2007) from Marshall (2003)). The smooth black curve shows decadal
variations. Enhanced SO westerlies occur in the positive phase of the SAM.

(see Fig. 1.4). The decadal-scale increase in wind stress drives more equatorward Ekman
transport and thus more upwelling of carbon-rich deep watermasses which in turn leads
to a decreased uptake of C'O,. It is clear that the ocean C'Os sink will persist as long as
atmospheric C'Oy increases, but the fraction of the C'O; emissions that the ocean is able
to absorb may decrease if the observed intensification of the SO winds continues in the
future and consequently the level at which atmospheric CO, will stabilise may be higher.
Since the observed shifting of the SAM index toward a higher index state has been related
to (anthropogenic) greenhouse gas increases (Marshall et al., 2004; Saenko et al., 2005;
Fyfe et al., 2007; IPCC, 2007), with stratospheric ozone depletion being another possible
cause (Thompson and Solomon, 2002), the overall scenario may represent in part a positive
feedback mechanism towards larger atmospheric C'Oy concentrations.

On the other hand, the meridional, cross frontal transports in the SO are strongly af-
fected or even controlled by meso-scale eddy activity which opposes the impact of the

Ekman transport. Hence, a key question for the possible future carbon source in the SO

sea level response around Antarctica and by its regulation of ACC flow through the Drake Passage.
Corresponding changes in oceanic circulation may explain recent patterns of observed temperature
change at SH high latitudes described by Gille (2002, 2008) (IPCC, 2007).
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is the response of the meso-scale eddy field to the changes in wind stress. In the coarse
resolution models of Le Quéré et al. (2007) and Lovenduski et al. (2007), the thickness dif-
fusivity of the GM parameterisation is fixed, i.e. not flow-interactive such that the response
of the parameterised eddy-field in those models is in question. In fact, it was demonstrated
by Hallberg and Gnanadesikan (2006) that eddy-permitting models, and in particular the
MOC in those models, do respond rather differently to changes in surface wind stress com-
pared to non-eddy-permitting models in which the eddy-driven MOC is parameterised by
GM. It is possible that the wind-driven increase in the MOC is completely counterbalanced
by a similar increase in the eddy-driven MOC (Hallberg and Gnanadesikan, 2001, 2006),
such that the carbon sink of the SO would stay more or less constant. It is clear that the
model based estimates of the future fate of the carbon sink in the SO by Le Quéré et al.
(2007) and Lovenduski et al. (2007) are strongly controlled (and biased) by the choice of
the fixed thickness diffusivity.

Consequently, the aims of the first research paper of the PhD thesis are the following:
To obtain a better understanding of the future changes of the MOC, and in particular the
future fate of the CO2 sink of the SO,

e we assess the response of the (eddy-driven) MOC in the SO to decadal-scale trends

in wind stress forcing in an idealised eddy-resolving model of the SO and

e we explore the ability of the recently developed parameterisation of Eden and Great-
batch (2008) to represent the corresponding changes in the eddy field in climate
models, by simulating the same decadal-scale trends in the SO in a corresponding

parameterised non-eddy-permitting ocean model of the SO.

While the first research paper addresses crucial issues of the present climate change de-
bate, namely the possible role of the MOC in the SO in a changing climate, the second and
third research papers take a step back and are guided by a more conceptual perspective:
One of the most common diagnostics of the MOC is the concept of the MOC streamfunc-
tion. The second and third research papers want to further clarify certain difficulties and
possible optimisations of the most prominent definitions of the MOC streamfunction, as

sketched in the following final section of the introduction.
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1.6 MOC streamfunctions

The overall MOC is given by a three-dimensional flow field (varying in time) which is
generally not zonally uniform but consists of many kinds of flows and counterflows of various
watermasses at different longitudes. In order to produce a compact picture (enabling an
efficient diagnosis) of the MOC, one mostly considers a zonal-mean streamfunction’, i.e.
a two-dimensional projection of the underlying complex three-dimensional flow field onto
the meridional-vertical plane. The zonal average is typically defined in the geometrically
simplest manner via zonal integration along latitude circles. However, the interpretation
of the resulting meridional-vertical circulation must be treated with care and not taken to
be typical of the flows found near any particular longitude: Each resulting circulation cell
may be a superposition of several different circulation cells and this may lead to an over- or
underestimation or even to the emergence of unphysical pictures of the overall watermass
movement. Nevertheless, the ultimate aim of the zonal-mean streamfunction approach
is, of course, to extract the essential physical aspects of the overall MOC. Depending on
the different possible physical foci, several streamfunction definitions (i.e. an ensemble of
different streamfunctions) may be necessary in order to provide an appropriate diagnosis
of the structure of the overall MOC. This fundamentally requires a precise understanding
of the effects of different zonal averaging procedures, i.e. how different types of zonal
integration extract different physical aspects of the overall three-dimensional fluid motion,
which therefore has been the subject of several studies (D66s and Webb, 1994; Mclntosh
and McDougall, 1996; McDougall and McIntosh, 1996, 2001; Karoly et al., 1997; Nurser
and Lee, 2004a,b; Eden et al., 2007; Nycander et al., 2007; D3os et al., 2008).

1.6.1 Standing-eddy-free streamfunctions

In general, in a time-zonal-mean framework the overall eddy field consists of two parts:
The transient eddy component of a quantity represents the deviation from the time-mean
of that quantity. Furthermore, any time-mean or steady quantity may be decomposed into
a zonal-mean part and a corresponding deviation, where the latter is the so-called standing
eddy component. For example, the typical zonal-mean streamfunctions may be decomposed

into a time-zonal-mean component, a standing eddy component and a transient component

7 In general, a streamfunction is defined for two-dimensional non-divergent flows such that its isolines
represent streamlines, i.e. its isolines are instantaneously tangential to the velocity vector of the flow at
each point. Consequently, the spatial derivatives of a zonal-mean streamfunction give the zonal-mean
“meridional” and “vertical” velocities.
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(Karoly et al., 1997; Olbers and Ivchenko, 2001; Lee and Coward, 2003). However, only the
transient component has the character of a turbulent (time dependent) eddy field while the
standing component must be considered as part of the time-mean flow and it attributes to
the eddying motion a non-local character because it includes the deviation from the zonal

mean.

In the SO, topographic features force the ACC system to carry out permanent meridional
excursions on its circumpolar path. This induces a major contribution of the standing eddy
component in the typical zonal-mean streamfunctions which is found to dominate over the
transient eddy component (Karoly et al., 1997; Olbers and Ivchenko, 2001; Lee and Coward,
2003). The dominance of the large-scale time-mean eddies over the transient eddies in
the SO is also found in the analysis of the momentum and potential vorticity budgets
(Marshall et al., 1993; Ivchenko et al., 1996; Gille, 1997b,a; Olbers and Ivchenko, 2001).
Moreover, in the zonally averaged picture many details (e.g. the correct zonal transport)
of the eastward ACC are lost (Olbers et al., 2004). Consequently, the zonal average along
latitude circles does not separate the time-mean and the eddy motion in a simple way. One
has to deal with an eddy component which dynamically belongs to the time-mean flow but
which overrides the transient component. Moreover, in non-eddy-permitting or analytical
models of the ocean circulation (regarding the SO, see e.g. Marshall and Radko (2003);
Olbers and Visbeck (2005)) the standing eddy terms have to be adequately parameterised
by zonally averaged quantities. Unfortunately, the standing eddy fluxes are only poorly
known so that they are usually simply ignored, despite there overwhelming importance
(Olbers et al., 2011).

To avoid this complication, the zonal integration paths are often redefined by attaching
the coordinate system to the specific flow in order to account for the permanent meridional
excursions of the flow field. The resulting convoluted averages aim to obtain a drastically
reduced standing eddy component such that a much clearer separation of the flow into time-
mean and transient components is produced. Analysing balances or setting up models is
then conceptually simpler because standing eddies can be neglected, however, the fields

(velocities, fluxes etc.) are oriented at the convoluted coordinates (Olbers et al., 2004).

Typically, an average oriented along “time-mean streamlines” is introduced, but the
various studies differ in the concrete specification of the zonal integration paths. While
Ivchenko et al. (1996) and Treguier et al. (2007) integrate along contours of the barotropic
streamfunction, Marshall et al. (1993) use contours of the Montgomery streamfunction,

Karsten and Marshall (2002) use surface geostrophic streamlines (using mean sea surface
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height) and Polton and Marshall (2007) integrate along Bernoulli potential contours. In
every study a single set of horizontal paths (surface contours) is used for each depth,
although Lee and Coward (2003) notice that there “are problems in using surface stream-
lines throughout the water columns since flows below the surface do not exactly follow the
surface streamlines”.

Hence:

e The aim of the second research paper of this PhD thesis is to clarify the idea of
neutralising the effect of the permanent meanders of the ACC (standing eddies) on
the MOC of the SO by a redefinition of the zonal integration paths, in order to

provide a consistent concept.

e [t turns out that the construction of a MOC streamfunction with an exactly vanishing
standing eddy part has to be performed by zonal integration along depth-dependent
horizontal isolines of time-mean density. In contrast, zonal integration along time-
mean streamlines may lead to a MOC streamfunction with a merely reduced standing

eddy part.

1.6.2 Streamfunctions directly computed in Eulerian space

The two mostly considered MOC streamfunctions are the residual streamfunction (Andrews
and Mclntyre, 1976; Eden et al., 2007) and the isopycnal streamfunction (Townsend and
Johnson, 1985; Nurser and Lee, 2004a).

The residual streamfunction is directly computed in Eulerian space via zonally averaging
the buoyancy budget, i.e. the residual streamfunction advects the zonal-mean buoyancy.
Physically, it is desired that, if there is no instantaneous diabatic buoyancy forcing, there
should be also no diabatic effects in the zonal-mean buoyancy budget, i.e. the eddy-induced
diabatic forcing should vanish too. Eden et al. (2007) (extending ideas of McDougall
and Mclntosh (1996); Medvedev and Greatbatch (2004)) demonstrate that this physical
criterion uniquely sets the residual streamfunction, especially the associated residual-mean
eddy streamfunction. However, the residual-mean eddy streamfunction is then given by a
series involving fluxes of eddy buoyancy moments.

The isopycnal streamfunction is calculated by zonally integrating the meridional trans-
ports along surfaces of constant potential density (isopycnals). This is motivated by the
common view of the MOC in the SO, where the movement of the watermasses in steady

state is predominantly adiabatic, i.e. along mean isopycnals and not across them (Wiist,
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1935; Webb and Suginohara, 2001). Consequently, the isopycnal streamfunction is orig-
inally given in latitude and buoyancy coordinates, but it may be transformed to depth
coordinates by identifying each zonal-mean buoyancy value with the corresponding isopyc-
nal’s zonal-mean height (McDougall and McIntosh, 2001; Nurser and Lee, 2004b). However,
in order to express the isopycnal streamfunction directly by Eulerian-mean quantities, Mc-
Dougall and Mclntosh (2001) and Nurser and Lee (2004b) apply a Taylor series analysis
centerd around the mean height of isopycnals. Therefore, the isopycnal streamfunction
may be given in two ways: On the one hand, it may be computed in an isopycnal averag-
ing framework. On the other hand, it may be given directly in Eulerian space and is then
expressed by a series expansion. Of course, this series expansion is different to the one of
the residual-mean eddy streamfunction; however, both are intimately connected.

Hence, if physically meaningful streamfunctions of the MOC are sought directly in the
Eulerian framework, which represents the most familiar framework, it seems that the ap-
pearance of series expansions generally represents a necessary and severe complication.
Most problematic is, practically, that it is inevitable to cut off the series expansions at a
certain order and hence one is left with approximate formulas. Typically, in a zonal-mean
framework the first order terms of both series expansions are considered as good approx-
imations in the nearly adiabatic ocean interior, but near horizontal boundaries (surface,
bottom) the approximate formulas are found to break down, i.e. unphysical nonzero (and
relatively large) values appear at the horizontal boundaries (Killworth, 2001; McDougall
and MclIntosh, 2001; Nurser and Lee, 2004b).

The subjects of the third research paper of this PhD thesis are the following:

e The first three orders of the series expansions of the residual-mean eddy streamfunc-
tion and the quasi-Stokes streamfunction are formally compared in order to specify
essential differences between these two intimately linked streamfunctions at low or-

ders.

e Furthermore, all terms up to the third order of both series expansions are considered
in different idealised models of the SO in order to investigate the behaviour of both

series expansions in different concrete model setups.

e Finally, a measure to diagnose regions in the ocean where approximations of the

series expansions break down is proposed.
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2 Towards the impact of eddies on the
response of the Southern Ocean to

climate change

This chapter is a reprint of the paper “Towards the impact of eddies on the response of the
Southern Ocean to climate change” published in Ocean Modelling. Author’s rights without
the need to obtain specific permission from FElsevier include the right to include the journal
article, in full or in part, in a thesis or dissertation’.

Citation: Viebahn, J. and C. Eden, 2010: Towards the impact of eddies on the response
of the Southern Ocean to climate change, Ocean Modell., 34, 150-165, doi:10.1016/5.0cemod.
2010.05.005.

2.1 Abstract

The sensitivity of the meridional overturning circulation (MOC) of the Southern Ocean
(SO) to wind stress changes is discussed. Using an idealised SO model in both non- and
eddy-permitting configurations, we assess the effects of both, coarsening the horizontal
resolution and implementing different parameterisations for the lateral eddy diffusivity ap-
propriate to the Gent and McWilliams (1990) parameterisation, K. We find that the MOC
is characterised by an eddy-driven part 1* which generally opposes the wind-driven part
and that the increase of the MOC diminishes with amplifying winds, with the possibil-
ity that the MOC in the SO may become completely insensitive to wind stress changes.
However, for moderate wind stress, the MOC is still significantly increasing in our config-
uration.

The diagnosed lateral eddy diffusivity K in the eddy-permitting version shows strong

spatial variability and is increasing with increasing wind stress. Similar to the MOC (but

! http://www.elsevier.com/wps/find /authorsview.authors/rights as of 25.10.2011
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in contrast to ©*) the increase of K diminishes with amplifying winds. It turns out that
a small increase in the isopycnal slopes is also relevant in order to capture the correct
sensitivity of ¢* on wind stress. This relation also holds in model configurations with
coarser but still eddy-permitting horizontal resolution: decreasing the horizontal resolution
decreases K, but increases the isopycnal slopes such that the strength of the MOC including
its sensitivity to wind stress is almost unchanged. The parameterisations are able to
reproduce the MOC for certain wind stresses, but all parameterisations underestimate the
sensitivity of K and thus overestimate the sensitivity of the MOC on wind stress. Our
results show that it is indispensable to incorporate the correct sensitivity of K into climate
models in order to reproduce the correct sensitivity of the MOC to wind stress and that

up-to-date parameterisations for K are only partially successful.

2.2 Introduction

The meridional overturning circulation (MOC) of the Southern Ocean (SO) is a key compo-
nent of the global overturning circulation: since the SO features an inter-basin connection
it permits a global overturning, and its MOC dominates the global transport of climate-
sensitive properties like heat, fresh water and dissolved gases such as carbon dioxide (Rin-
toul et al., 2001). Current schematic understanding of the MOC of the SO begins with
the decomposition of the southward flowing Circumpolar Deep Water into Upper Circum-
polar Deep Water (UCDW) and Lower Circumpolar Deep Water (LCDW) to constitute
two limbs of the deep overturning circulation (see Fig. 2.1): in the upper limb UCDW
flows poleward and upward across the eastward flowing Antarctic Circumpolar Current
(ACC) and upwells to the surface at the poleward flank of the ACC. It then travels equa-
torward in the surface Ekman layer beneath the strong westerly winds and is exposed
to air-sea buoyancy fluxes. This contact with the atmosphere transforms UCDW into less
dense Antarctic Intermediate Water (AAIW) or Subantarctic Mode Water (SAMW) which
subducts in turn downward and equatorward at the equatorward flank of the ACC into
the main thermocline near the Subantarctic Front.

In the lower limb, LCDW upwells closer to Antarctica and then transforms due to convec-
tive and diabatic processes occurring in narrow regions near the continental shelves around
Antarctica into denser Antarctic Bottom Water (AABW) which then flows equatorward
near the bottom. The interior circulation of the UCDW is likely to be nearly adiabatic

and oriented along density surfaces (Webb and Suginohara, 2001) and therefore reflects
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Figure 2.1: Schematic representation of the MOC of the SO. Further details are given in
the text. Redrawn from Olbers and Visbeck (2005).

the shape of the isopycnals. Associated with the MOC of the SO is a density field charac-
terised by an poleward increase of the surface density and strongly tilted isopycnals across
the ACC, which almost all outcrop around Antarctica such that density surfaces connect
the deep ocean to the north of the ACC with the surface areas to the south (Gouretski
and Jancke, 1998).

The wind, buoyancy and eddy forcing (and a possible contribution by diapycnal mixing)
controls the magnitude and direction of the MOC and the stratification in the SO. The
strong westerly winds over the SO drive a large equatorward surface Ekman transport
across mean streamlines of the ACC and produce divergent transports associated with
upwelling south of the ACC and convergent transports associated with downwelling north
of the ACC. In addition, air-sea buoyancy fluxes provide the necessary diabatic forcing for
watermass transformation (Speer et al., 2000). The potential energy stored in the sloping
isopycnals of the ACC due to wind and buoyancy forcing is released through baroclinic
instability such that the meso-scale eddies generated by this process act to flatten the
isopycnals. Since Reynolds stresses appear too small, it is believed that meso-scale eddies
(as interfacial form stresses) provide the balancing of horizontal fluxes of heat and vertical
fluxes of momentum (Munk and Palmén, 1951; Olbers and Ivchenko, 2001), and therefore
accomplish a major task in shaping the MOC of the SO.

The upwelled deep watermasses are exposed to air-sea fluxes and, after crossing the ACC,
descend into the ocean interior again, ventilating the intermediate and abyssal depths of

the southern hemisphere oceans. This process is a key component of the physical part of
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the marine carbon cycle in the SO. Considerable outgassing of C'O, is found in observa-
tional estimates of natural air-sea C'Oy fluxes at high southern latitudes (> 44°S), such
that the SO becomes a C'O, source in pre-industrial climate (Mikaloff Fletcher et al., 2007).
This outgassing is likely driven by the upwelling of waters with high concentrations of rem-
ineralised dissolved inorganic carbon (DIC'), from which a substantial fraction can escape
into the atmosphere since the carbon uptake by biology at the surface (and drawdown to
depth) in the SO is slow and inefficient because of limitation of light and micro nutrients.
Another process contributing to the outgassing is the surface warming poleward of the
ACC which raises the partial pressure of carbon dioxide. In contrast, the SO is currently a
region of large uptake of anthropogenic CO, (Caldeira and Duffy, 2000; Sabine et al., 2004;
Mikaloff Fletcher et al., 2006) since the deep upwelled watermasses have low anthropogenic
CO4 content, and cold surface waters and strong winds enhance the air-sea gas transfer.
The near cancellation between substantial outgassing of natural CO, and strong uptake
of anthropogenic C'O, results in a small contemporary C'Oy sink in the SO (Gloor et al.,
2003; McNeil et al., 2007; Gruber et al., 2009). Column inventories of anthropogenic C'Oy
suggest that the formation and transport of mode and intermediate waters is the primary
mechanism for transporting anthropogenic C'O, to intermediate depths in the SO while
deep water formation, that is deep convection activity near the Antarctic continental shelf

plays a minor role (Caldeira and Duffy, 2000).

The response of the SO carbon sink to recent climate change is under debate. Several
recent studies (Le Quéré et al., 2007; Lovenduski et al., 2008) identify a strong decadal
scale trend toward a weakening of the SO C'O, sink and suggest the following scenario:
the ability of the SO to take up anthropogenic C'O5 have decreased in the last two decades
due to a climate-change induced poleward shift and intensification of westerly winds over
the SO (Thompson and Solomon, 2002) enhancing the MOC of the SO and therefore the
upwelling of deep waters rich in DIC'. This process elevates the oceanic partial pressure
of C'Oy in the surface waters which leads to a decreased uptake of C'O, by the SO.

Since many coupled climate models consistently find a continuation of the trend toward
stronger, poleward shifted winds over the SO for the next decades (Meehl et al., 2007;
Fyfe and Saenko, 2006), a detailed understanding of the MOC of the SO and its response
to wind changes is necessary to quantify the role of the SO in the global C'O, budgets
and to project future anthropogenic C'Oy uptake by the ocean. Climate, i.e. coarse-
resolution ocean models indeed reproduce the suggested scenario: an increase in the slopes

of density surfaces across the ACC as a dynamic adjustment to a poleward shift and
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intensification of the Southern Hemisphere westerlies (a positive trend in the Southern
Annular Mode index), related to an increase in ACC transport and an southward shift of
its mean position (Fyfe and Saenko, 2006; Saenko et al., 2005). The MOC of the SO in these
models is increased, governed by the effect of enhanced northward Ekman transport, with
an enhanced downwelling of surface waters north of the ACC, and upwelling of deep water
rich in DIC south of the ACC (Oke and England, 2004; Zickfeld et al., 2007; Lovenduski
et al., 2007, 2008).

However, this behaviour is under debate since none of these models used to study the re-
sponse of the SO carbon sink to changes in wind forcing resolve meso-scale eddies. Instead,
the meso-scale eddy parameterisation by Gent and McWilliams (1990) is implemented
where a fixed lateral eddy diffusivity K is used to account for the meso-scale variability
and its effect on the MOC of the SO. High-resolution models permitting meso-scale eddies
demonstrate that the MOC in these models does respond rather differently to changes
in surface wind stress compared to non eddy-permitting models in which the eddy-driven
MOC is parameterised (Hallberg and Gnanadesikan, 2006). They suggest that the in-
crease in northward Ekman transport caused by stronger westerly winds might be (partly)
compensated by the meso-scale eddy effect, which may result in only a small change in
mean transport and overturning (Hallberg and Gnanadesikan, 2006; Hogg et al., 2008).
Furthermore, observational studies find that stronger westerly winds induce an increase in
eddy activity (Meredith and Hogg, 2006) and that upwelling, isopycnal slopes and ACC
transport appear to be insensitive (on timescales longer than a few years) to changes in
wind forcing (Boning et al., 2008) suggesting a strong effect of wind-induced increases in
eddy activity. Thus, projecting the behaviour of the SO and its carbon sink in greenhouse
scenarios will require models that capture realistically the response of the meso-scale eddy
field of the ACC to the changes in wind stress.

The aims of this study are: (i) to simulate and to understand the response of the
eddy-driven MOC of the SO to decadal-scale trends in wind stress and (i) to explore
the representation of these changes in the context of meso-scale eddy parameterisation
of Gent and McWilliams (1990) using a fixed lateral eddy diffusivity K versus a flow-
interactive parameterisation of K proposed by Eden and Greatbatch (2008), in order to
clarify the representation of the effect of eddies on the simulated circulation and watermass
characteristics of coarse resolution (climate) models. Therefore, we simulate the response
of the meso-scale eddy field and the eddy-driven MOC of the SO to the changes in wind

stress using both, eddy-permitting and parameterised non-eddy-permitting models.
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This study is structured as follows: in the next section, we discuss the theoretical frame-
work assessing the MOC, that is, the residual-mean theory by Andrews and Mclntyre
(1976) and the diagnostic model of the MOC of the SO by Marshall and Radko (2003)
as well as the eddy parameterisations given by Gent and McWilliams (1990) and Eden
and Greatbatch (2008). In the following section we describe the numerical models and the
design of the numerical experiments. In the fourth section, we present the results. The

last section provides a summary and conclusions.

2.3 Theoretical framework

2.3.1 Residual-mean theory

In the common view of the MOC of the SO, the movement of the watermasses in the ocean
interior in steady state is along mean isopycnals (Wiist, 1935; Webb and Suginohara,
2001). Watermasses are transported advectively along isopycnals where meso-scale eddies
may provide an additional transport via a bolus velocity (Gent et al., 1995). In order
to obtain a physically meaningful overturning cell in a zonal average the use of density
coordinates instead of depth coordinates would thus be necessary. As an alternative,
MeclIntosh and McDougall (1996) show that to second order in a perturbation expansion,
the circulation averaged in density coordinates is equal to the so-called residual circulation

in depth coordinates, given by the residual mean streamfunction

wres = E"‘ w* s (21)

where 1) represents the overturning streamfunction in depth coordinates, the so-called Eu-
lerian streamfunction, and ¢* represents the eddy streamfunction (Andrews and McIntyre,
1978Db)

. v*b*0,b — w*b*d,b
(90 + (9:D)?

(2.2)
Here, v and w are the meridional and vertical velocities, b is the buoyancy, the overbar

represents an average (zonally and in time) and the star represents the deviation from the

zonal average. The corresponding meridional and vertical residual velocities are given by

Vres = _azwres ) Wres = ywres ) (23)
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and accordingly for 7,@ and v*, w*, given by their streamfunctions ) and v*, respectively.
In the residual-mean formulation 1),.; advects the mean tracer, b. The steady-state buoy-

ancy residual-mean equation reads
J(Yres, b)) = V- (KV) + gy , (2.4)

where J(A, B) = 0,A0,B — 0,A0,B; g, represents buoyancy forcing due to air-sea fluxes
and small-scale mixing, which might be expressed by a divergence of a vertical buoyancy
flux B, with ¢, = 0.B, and

B v*b*ayl_) + w*b*0,b

@,b7 + (0.0 (25)

Equation (2.4) can be interpreted as a reformulation of the steady and zonally averaged
buoyancy equation by separating the eddy buoyancy flux (v*b*,w*b*) into a diapycnal
component —xVb of diffusive nature and an isopycnal part —*(—a.b, 8y5) of advective

nature. In the ocean interior k = 0 is expected and it follows for the eddy streamfunction

*

v*b w*b*
lyegp= —= = ——— for k =0. 2.6
Ve =53 0,b (2:6)

The vertically integrated (from depth z to the surface) steady and zonally averaged zonal

momentum equation is given by
—fo=1-1,—-F-R, (2.7)

where f is the Coriolis parameter, 7 is the zonally averaged zonal wind stress and 7, is
an unspecified subgrid-scale stress. F is the bottom form stress which accounts for zonal
pressure differences at topographic obstacles, and R represents the Reynolds-stress and
momentum advection. For the case that R and 7, are small and since F is only relevant
near the bottom topography, the zonal momentum balance simplifies to 1) ~ —7 /f above

bottom topography.

The meridional, cross frontal transports in the SO are strongly affected or even controlled
by meso-scale eddy activity (Olbers and Ivchenko, 2001): considering only the impact of
the Eulerian circulation ¢, that is the Ekman transport, the deep watermasses would
upwell from the bottom to the surface in a more or less vertical pathway. This circulation
is sometimes called the Deacon Cell of the SO (Doos and Webb, 1994). It appears rather
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

unphysical since the flow would cross isopycnals in the interior. This conflict can be
resolved by including the effect of the meso-scale eddy circulation 1* which acts to redirect
the wind-driven MOC such that the residual flow, i.e. the sum of the mean, wind-driven
and the eddy-driven circulation, is along the mean isopycnals. In fact, it was found that
the residual MOC is much weaker than the wind-driven part only, i.e. the eddy-driven
MOC is partly compensating the wind-driven one (Olbers and Ivchenko, 2001; Karsten
and Marshall, 2002; Treguier et al., 2007). Thus, in a highly eddying region such as the
ACC, it is the residual flow rather than the Eulerian flow that should be considered.

2.3.2 Eddy-flux closure

In coarse-resolution models, the effect of the meso-scale eddy field has to be adequately
parameterised. It is current practise to use the meso-scale eddy parameterisation by Gent
and McWilliams (1990) in non-eddy-permitting ocean models. The Gent and McWilliams
(1990) parameterisation assumes that the meridional eddy buoyancy flux v*b* is directed

down the meridional gradient of mean buoyancy
v*b* = —Ko,b . (2.8)

Note that Eq. (2.2) (with x = 0) ensures that the total parameterised eddy flux is directed
along mean isopycnals using Eq. (2.8). The so-called eddy diffusivity K has to be specified;
it accounts for the advective effects of turbulent lateral mixing by meso-scale eddies. The
choice of K strongly affects the meridional and zonal transports of mass and tracers, in
particular in the SO (England and Rahmstorf, 1998), and is therefore of crucial importance
in order to quantify the role of the SO in the climate system. Typically constant values of
O(1000m?/s) are chosen in ocean climate models. However, it was demonstrated that K
shows strong horizontal and vertical variations, and, in addition, that K should really be
a tensor (Ferreira et al., 2005; Eden, 2006). Using a fixed eddy diffusivity K in non-eddy-
permitting ocean models, as e.g. in Le Quéré et al. (2007); Lovenduski et al. (2007), the

eddy-driven MOC may not respond realistically to changes in surface forcing.

A new flow-interactive meso-scale eddy closure for a scalar eddy diffusivity K was re-
cently developed and evaluated by Eden and Greatbatch (2008). The simple closure for

the horizontal eddy buoyancy fluxes in the ocean is given by adopting the downgradient
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parameterisation (2.8) and assuming
K=1LU, (2.9)

where L denotes a characteristic eddy length scale and U denotes a characteristic eddy
velocity. U is related to the mean eddy kinetic energy E = W (EKE) via U =
VE. This standard mixing length assumption for the eddy diffusivity K of the Gent and
McWilliams (1990) parameterisation is motivated by Green (1970) who first proposed the
application of a mixing length approach for the eddy effect in geostrophic turbulence. The
eddy length scale L is determined as the minimum of the local first baroclinic Rossby radius
L, = [° (9.b)/2dz/(| f|r) and the Rhines scale Lgn; = \/U/B, that is, L = min(Ly, Lgn)-
The closure also includes a prognostic equation for the FKFE that is integrated as an
additional model variable of the non-eddy-resolving model. Terms of production, radiation
and dissipation of FKFE are parameterised based on variables of the non-eddy-resolving

model. More precisely, the EK E budget is given by

OWE+v0,E+w0,E=8+bw—e—V-M, (2.10)

where S = —(v*u*d,u + wurd,u + v*v*9,U + w*v*0,0) describes the energy exchange
between mean kinetic energy and FKE, b*w* denotes the energy transfer between eddy
potential energy and EK E (related to baroclinic instability), and the dissipation of EKE
is denoted by €. The term M, V- M = 9,v*E + d,w*E + 9,0°p* + d,w*p*, contains the
effect of advection of FK FE by the fluctuating flow and correlations between pressure and

velocity fluctuations.

Eden and Greatbatch (2008) propose simple parameterisations for the terms on the right
hand side of Eq. (2.10): by assuming x = 0 and the downgradient parameterisation (2.8),
it follows b*w* = K(9,b)?/9.b. In analogy to homogeneous three-dimensional turbulence,
Eden and Greatbatch (2008) use € = CE3/2L_1, where ¢ denotes a dimensionless constant
typically of order one, ¢ = O(1). The flux M is interpreted as radiation of FKE and
parameterised as isotropic horizontal diffusion of EK E, that is, V-M = —0, (K ayE). For
further details we refer to Eden and Greatbatch (2008). Collecting the parameterisations,

the FK E budget for the ocean interior (x = 0) becomes

OFE+7 0,E+w 0,F =5+ K(9,0)2/0.b— cB* L' + 0,(K9,E) . (2.11)
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

This equation can be prognostically integrated in a coarse resolution model which gives
the diffusivity K = VEL. However, neglecting the diffusive and advective terms and
the energy production term S, and assuming 9,F = 0, we obtain the following simplified

expression for the eddy diffusivity K:
K =cL% , (2.12)

where the inverse time scale o = |3,b|/N = | f0.7|/N is related to the vertical shear of the
mean flow and is identical to the Eady growth rate. L is given by L = min(L,, Lgp;), with
Lgn; = o/f. In this limit, the closure becomes similar to the parameterisation given by
Visbeck et al. (1997), except that the definition of the length scale L differs and Visbeck
et al. (1997) use o averaged over the main thermocline. A comparison between the closures
of Visbeck et al. (1997) and Eden and Greatbatch (2008) has been done in Eden et al.
(2009a).

In section 2.5.3 we will assess this flow-interactive and spatially varying eddy closure,
as given by Eq. (2.12), by using an idealised and eddy-permitting ocean model: first, we
will directly compare the eddy diffusivity of the model itself (obtained by directly solving
Eq. (2.8) using the model data) with the eddy diffusivity (2.12), that is, we will compare
their spatial structures and sensitivities on wind stress; second, we will consider the effects
on the MOC of both, the closure (2.12) and a constant eddy diffusivity as assumed in a
standard Gent and McWilliams (1990) closure.

2.3.3 Diagnostic model

Marshall and Radko (2003) proposed a simple diagnostic model for the upper limb (above
topography) of the MOC of the SO based on zonal mean residual-mean theory. We give
a short presentation of the diagnostic model since we will use it in order to interpret our
numerical model results. Note that Olbers and Visbeck (2005) proposed a similar but prog-
nostic model of the MOC of the SO. However, in both models the balance between Ekman
transport and meso-scale eddies plays a fundamental role in setting the stratification and
overturning circulation.

Marshall and Radko (2003) divide the ocean into an upper mixed layer and an ocean
interior underneath. The mixed layer is assumed to have a constant depth h,,, a vertically
homogeneous mean buoyancy field b,,(y) and vanishing vertical sub-grid buoyancy flux at
the base of the mixed layer, that is B(z = —h,,) = 0. Integrating Eq. (2.4) over the depth
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of the mixed layer gives 2

Bl.=0 — fi)hm 0,(v*b) dz _ B
Dy = o

Vres|s=—hm = (2.13)
which states that information about .., can be obtained by inspection of the surface
buoyancy distribution (9,b,,), the surface air-sea buoyancy flux (B|.—) and the mixed
layer lateral (diapycnal) eddy buoyancy fluxes ( fi)hm 9,(v*b*)). In other words, the residual-
mean overturning is given by the watermass conversion rate Bin steady state (Walin, 1982)
divided by the meridional gradient of the zonal mean surface buoyancy distribution. Note
that in the SO ame > 0 holds. The relative importance of the two terms B|,—o and
d,(v*b*) to the watermass conversion rate B is currently not clear (Marshall and Radko,
2003). For surface water to move equatorward B > 0 has to hold, corresponding to local
buoyancy gain by the mixed layer. If the mixed-layer buoyancy gradient is constant the
strength and sense of the residual circulation are directly proportional to B.

The ocean interior is assumed to be adiabatic, that is, eddies transport and mix only
along isopycnals, x = 0, and diapycnal mixing by small-scale turbulence is neglected,
g = 0. Hence, all mixing and watermass formation processes take place in the mixed

layer. From Eq. (2.4) it follows

J(Wres ) =0, (2.14)

which states that mean isopycnals and streamlines of the residual circulation coincide in

the interior. These curves can be found as follows: applying Eq. (2.8) in Eq. (2.6) we find

7#ﬂinﬂferior = Ks 5 (215)

where s = dy/dz|p—const = —3yl_7/ 0,b represents the slopes of the mean isopycnals. Using
Eq. (2.7) we obtain the following equation for the slopes (above topography)
To wres

s=IE T (2.16)

For given 7y, K, by, and buoyancy forcing B this equation can be integrated along char-
acteristics (see Marshall and Radko (2003); Olbers and Visbeck (2005)) since 9.5 can be

evaluated at the base of the mixed layer via Eq. (2.13) and it is constant along character-

24res = 0 at the surface, because W = w* = 0 holds there.
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

istics due to Eq. (2.14). The values of buoyancy b and ., on the characteristics are then
determined by b, and Ures|s=—n,,, that is, in the mixed layer. It is the interplay of Ekman
transport, meso-scale eddies and surface conditions that determine the upper limb (above
topography) of the MOC of the SO. In particular, the dependence of the thermocline on
wind stress is determined by Eq. (2.16).

In this simple diagnostic model a prescribed surface buoyancy distribution is mapped
down from the base of the mixed layer into the interior for a given pattern of wind and
buoyancy forcing and under the assumption of adiabatic interior dynamics. Sense and
strength of the (residual) overturning circulation are determined by surface conditions at
the same time. The effect of eddies also plays an essential role, but their impact remains
problematic since K still has to be specified, that is, K has to be adequately parame-
terised. Different parameterisations can fundamentally alter the functional dependencies
of all quantities, as demonstrated below.

In the following study we consult the interior part of this diagnostic model, that is Eq.

(2.16), in order to discuss our numerical model results; we rewrite Eq. (2.16) as

T
¢7‘es|inte7‘io7‘ = _?O + Ks. (217)

Eq. (2.17) states that the mutual compensation of wind-driven Ekman transport and
subsequent eddy circulation, given by the product of eddy diffusivity K and isopycnal
slopes s, essentially constitutes the interior overturning circulation. The buoyancy forcing
is implicitly present, first of all in s.

Furthermore, in section 2.5.4 we will demonstrate the crucial dependence of Eq. (2.17)
on the eddy diffusivity K by determining K in different ways and comparing the resulting
interior overturning circulations with numerical model results. In other words, we will
assess under which conditions Eq. (2.17) represents an adequate conceptual understanding

of the upper limb of the MOC of the SO regarding our idealised numerical model setup.

2.4 Numerical model and experiments

2.4.1 Idealised numerical ACC model

To assess the response of the meso-scale eddy field to different strengths of the zonal
wind stress and its effect on the MOC of the SO we consider eddy-permitting simulations.
In this study we use the idealised ACC configuration of CPFLAME (http://www.ifm-
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Figure 2.2: Left: target buoyancy b*/Ab for the surface restoring boundary condition and
different wind forcings T;/m imposed in the idealised ACC model. Mid-
dle: zonal velocity at the surface from the idealised ACC model for 7, =
0.5 x 107*m?s2 (contour interval is 0.15ms™!). Right: maxima of the resid-
ual streamfunction ¢,.s [Sv] at 200m depth in the ACC part for a 1-year-mean
(green), 5-year-mean (blue), and a 15-year mean (thick red) for increasing wind
stresses 7, = 1 x 107*m?2s72, 75 = 1.5 x 107*m?s72, and 75 = 2.5 x 107*m?2s72.

geomar.de/~cpflame), an eddy-permitting primitive equation model consisting of a zonally
reentrant channel (the ” ACC part”) which is connected to a northern ocean basin enclosed
by land (the ”Atlantic part”). The equations are formulated in Cartesian coordinates and
the beta-plane approximation is used. The domain of the idealised ACC model extends
over L = 2500km in zonal and meridional direction with AR; = 5km horizontal resolution
and 20 vertical levels with 50m thickness. We simulate only buoyancy in the model, which
might be thought as proportional to temperature. The circulation in the model is driven

by a sinusoidal eastward wind stress T; over the ACC part, i.e.

T, = msin(2ry/L) for y < L/2 (2.18)
T, = 0 else , (2.19)

and a surface restoring boundary condition for buoyancy b with a restoring time scale of
30 days and target buoyancy b* as given in Figure 2.2 (left). A list of numerical constants
used in the model runs is given in Table 2.1. The boundary conditions on the northern and
southern edges of the domain are simply given by no-flux conditions. Hence, the watermass

distribution is solely determined by the surface boundary conditions.

We impose a flat bottom and a land mass distribution as indicated in Figure 2.2 (middle)
where the zonal velocity at the surface for 7, = 0.5 x 10~*m?s~2 is shown. In the ACC part

the zonal flow is predominantly eastward with a strong jet slightly northward of the wind
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Buoyancy change across ACC  Ab 30 x 1073m s~2
Restoring time scale T, 30 days

Coriolis parameter fo —6x107°s7!
Planetary vorticity gradient B 2x107Umtst
Density of water po 1024 kg m™3
Vertical viscosity A, 1073m?2s7!
Vertical diffusivity K, 107*m?2s7!
Biharmonic viscosity Appi 1.56 x 1010mis—1
Bottom friction parameter T 1072571

Table 2.1: Numerical constants used in the idealised numerical model in the standard
configuration.

stress maximum. The eddying structure of the jet is clearly visible. In the zonal mean,
both EKE and eastward flow (not shown) in the ACC part of the model have a maximum
at the surface slightly northward of the wind stress maximum (at around 800km) and
monotonically decrease north- and southward and with depth. Note, however, that the

zonal flow extends over the whole water depth.

We also performed a series of additional experiments with conditions closer to the real
ACC, ie. a deeper basin (5000m depth) and/or a topographic sill in the ACC part.
However, the results concerning the MOC of the SO intermediate waters and the meso-
scale eddy field are qualitatively similar to the more idealised flat bottom and 1000 m deep
basin®. In each case, the meso-scale eddy field in the whole water column remains essential
in shaping and closing the MOC. However, in order to keep the discussion as clear as
possible we focus on the simplest setting in this paper.

Figure 2.3 shows the residual (1,.s), eddy (¢*) and Eulerian MOC (1) of the idealised
ACC model for 71 = 0.5 x 107*m?s~2. As expected, the Eulerian streamfunction 7 in the
ACC part is essentially given by the Ekman transport, that is 1) ~ —7/f (see (2.7)). The
maxima of ¢ are slightly shifted northward with respect to the wind stress maximum (they
are located at y ~ 800km instead of y ~ 700km for —7/f) and are around 10% larger than
for —7/f at 150m depth (this also holds when using larger wind stresses, see Figure 2.5
below). The eddy driven streamfunction ¢* is large in the ACC part and of opposite sign
(and direction) of ¢» but much smaller and of fluctuating sign in the Atlantic part of the

domain. Differences between the eddy streamfunction ¢* calculated from (2.2) and K's (see

3 These additional model runs were done with a coarser horizontal resolution of 20km. However, as
documented in section 2.5.2, the MOC and the meso-scale eddy field of our model qualitatively show
the same behaviour also at 20km horizontal resolution.
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Figure 2.3: Zonal and time mean (upper left) Eulerian (¢), (upper right) eddy (/*) and
(lower left) residual streamfunction (t,.s) from the idealised ACC model for
71 = 0.5 x 107*m?s~2. Contour interval is 0.2 Sv in each case and zero lines
are thick. Also shown is the zonal and time mean buoyancy distribution with
a contour interval of 0.001m/s* and a thick 0.007m/s? line.

(2.15)) are very small (also when using larger wind stresses). The large Ekman pumping
on the northern flank of the ACC is indeed almost balanced by eddy driven upwelling such
that the sum of both, the residual streamfunction ),.s, is consistent with the common
view of the MOC of the SO and its role in the global large-scale meridional overturning:
deep watermasses formed in the northern convective regions of the Atlantic part upwell
across the ACC part, connecting both regions, and then return as subducted intermediate
or mode water in order to close the circulation. There is even an indication of a reversed
cell related to bottom water. The residual flow in the interior is nearly oriented along

isopycnals as can be seen by comparison with the mean buoyancy distribution also shown
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in Figure 2.3. The residual streamlines intersect the isopycnals mainly in the convective
region at the northern end of the domain, and in the surface waters of the ACC part, where
watermass transformation takes place. In the ACC part the isopycnal slopes are largest
at the southern boundary and then decrease towards the northern end of the ACC part.
Note that the peaks and recirculation cells in the center of the domain are due to standing
eddy contributions related to the sharp edge in the land mass distribution®.

Of course, this idealised eddy-permitting model can not be considered as a perfect rep-
resentation of reality. However, we believe that the model setup includes the essential
dynamical ingredients to describe the circulation of the SO and the global MOC. In par-
ticular, AR; = 5km horizontal resolution appears adequate in order to resolve meso-scale
eddy-like features: the Rossby radius in our model is smallest near the southern bound-
ary with values of about 2km but increases rapidly towards the north, with about 20km
in the middle of the ACC part. Assuming that meso-scale eddies form on a scale about
three times the Rossby radius, our model represents the generation of meso-scale eddy-like
features well over wide ranges of the model domain. That is, we expect that our model
simulates well the impact of the eddy field on the response of the residual MOC of the SO
to changing winds in our idealised setting, although we cannot completely rule out possible
changes by further refinements of the computational grid. Further, we consider the small
northern basin, which is allowing the effective formation of a model NADW to close the
circulation, as a sufficient addition to the SO to study the MOC of the SO in our idealised
context without prescribing additional vertical boundary conditions at the northern end
of the SO. We note, that the strength of the northern sinking and thus the global MOC
depends on the northern as well as the southern buoyancy gradient and also on the wind
stress. Since our main objective is on the sensitivity of SO to changes in wind stress, the
following discussions and figures focus on the ACC part and on the impact of wind stress
for the rest of this study.

2.4.2 Experiments

In order to mimic the response of the MOC of the SO to wind changes, we discuss several
experiments with different, but in each case fixed strengths of wind stress, while the surface
buoyancy restoring stays the same. The wind stress amplitude 7 is increased in steps of

0.5 x 107*m?2s72 from 79 = 0m?s~2 up to 75 = 3 x 107*m?s72 (as indicated in Fig. 2.2 for

4 Moreover we note, that for large wind stresses irregularities of the residual MOC appear at depth.
These features can be related to rotational eddy fluxes which we aim to discuss in a further study.
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the first four wind stresses (left)). The model needs some time to equilibrate. The time
scale depends on the amplitude of the Ekman pumping but already after a few decades
a steady state is reached in all experiments (see Fig. 2.2 (right)). In the following, we
consider each quantity in a zonal and time mean for the years 30 — 45. The results are

presented in section 2.5.1.

In order to consider more complex and realistic model setups it may be necessary to
use coarser resolutions. We document the effects of such coarsening in section 2.5.2. We
use horizontal resolutions ARy, = 10km and AR3 = 20km respectively, to obtain two
additional eddy-permitting model setups. For both cases we perform the same series of
experiments as for AR, except that we increase the wind stress amplitude in case of AR,
in steps of 1 x 107*m?2s™2. The biharmonic viscosity Any is Apy = 1.25 x 101 m*s~! in

case of ARy and App; = 1 x 10"m*s™! in case of ARj5.

In section 2.5.3 we assess the effects of parameterising the meso-scale eddy field, necessary
in climate models, on the simulated circulation. Therefore we implemented the Gent
and McWilliams (1990) parameterisation, given by Eq. (2.8) for v*b* and similar for
u*b*, in our numerical model at resolution ARs, specifying the eddy diffusivity K in two
different ways, with five different parameter choices in each case. On the one hand, we
specified K to be constant with Koo = 1000m? /s, Koo = 2000m? /s, Kzgpo = 3000m?/s,
K00 = 4000m? /s, and Ksop0 = 5000m?/s. On the other hand, in order to include spatial
variations of the eddy diffusivity K, we implemented the flow-interactive meso-scale eddy
closure by Eden and Greatbatch (2008), given by Eq. (2.12), using five different values
for the dimensionless constant ¢: ¢ = 1, ¢co = 2, ¢c3 = 3, ¢4 = 4, and ¢5 = 5. The
corresponding eddy diffusivities are denoted by Kgq1, ..., Kggs. In order to implement the
Gent and McWilliams (1990) parameterisation in our numerical model we used the residual-
mean formalism according to Ferreira and Marshall (2006), that is, the eddy forcing in the
momentum equation is represented as a vertical viscosity as first discussed by Greatbatch
and Lamb (1990). We simply added a term 0,(K f?/N?9,u) to the momentum budget
in the model, where N = (8Z5)1/ 2 denotes the stability frequency. In regions where N
goes to zero we have replaced f?/N? with min(f?/N?,0.01). Note that the additional
vertical friction acts in the model very similar to the standard approach by adding an
additional advection (bolus) velocity in the buoyancy budget. For each of our ten different
choices for K we performed the same series of experiments as for the eddying models. We
also included harmonic viscosity A, in certain parameterised model versions, in order to

completely suppress eddy activity (which tend to be present for strong Ekman pumping
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and small eddy diffusivity): for the cases Kjgoo and Kgg1 we included harmonic viscosity

2 where we used

of A, = 15000m?2s~! for all wind stresses, except for 75 = 3 x 10~*m?s~
A, = 25000m?s~! in case of Kjgo. Furthermore, in the case Kyyyo we included A; =
5000m?2s~! for 7y up to 75 and A, = 15000m?s~! for higher wind stresses, while in case
K000 we included A, = 5000m?s~! for 73 and A, = 15000m?s~! for higher wind stresses.
Finally, in case Ky00 we included A = 15000m?s~! for 75 and 7. Note that the actual
MOC is insensitive to this model parameter in the parameterised models. However, we
tried to use lowest possible values of Aj in all experiments.

We further focus our discussion on the nearly adiabatic interior dynamics of the ACC
part. This part of the idealised numerical model is bounded by a surface, a bottom and a
southern coastal boundary layer. In all of these regions mixing is dominating and watermass
transformations take place. With increasing wind stress the surface boundary layer base
increases from —100m to —150m and the bottom boundary layer surface increases from
—800m to —750m. The limits of the southern coastal boundary layer and a recirculation
region are located around 100km and 1000km respectively. In the following we will focus

on the interior region delimited by these bounds.

2.5 Results

2.5.1 Eddy compensation effect

Figure 2.4 shows the residual streamfunction (2.1) in the SO of the eddy-permitting ide-
alised numerical model for three different wind stress amplitudes 7, = 0.5 x 10™*m?2s72,
Ty = 1x107*m?2s7 2 and 73 = 1.5 x 10~*m?s~2. With increasing wind stress the residual cir-
culation is strengthened and the depth of the positive residual circulation cell is increased.
That is, magnitude and depth of the residual MOC are correlated. Both components, the
wind-driven (1, not shown) and the eddy-driven MOC (¢*, not shown), are significantly
increasing with increasing wind stress such that the essential structure of the residual MOC
remains the same: the large Ekman pumping on the northern flank of the ACC part is
almost balanced by eddy driven upwelling such that a large-scale meridional residual over-
turning connects the upwelling regions of the ACC part with the convective regions of the
Atlantic part. The Eulerian streamfunction 1 in the interior ACC part (not shown) is
increasing nearly linearly in accordance to our expectation, that is 1) is essentially given
by the Ekman transport, ) ~ —7/f (differences between the Ekman transport —7/f and

1) are due Reynolds-stresses which increase the maxima of the Eulerian streamfunction ).
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Figure 2.4: Zonal and time mean (upper) residual streamfunctions (¢,.s) and (lower) buoy-
ancy distributions (b) from the eddy-permitting idealised ACC model for wind
stress amplitudes (from left to right) 7 = 0.5 x 107*m?2s™2, 7 = 1 x 107 *m?2s~2
and 73 = 1.5 x 107*m?s™2. The contour intervals are (upper) 0.2Sv and (lower)

0.001 m/s?. Thick lines are (upper) zero lines and (lower) 0.007 m/s? lines.

We emphasise that the response of the eddy driven circulation is essential in shaping the
response of the residual overturning circulation to changing wind stress: the eddies reduce
the SO Ekman overturning and establish the connection to the Atlantic part, that is, the
global overturning. The general behaviour (i.e. for any wind stress) of the eddy-driven
MOC #* to oppose the Eulerian MOC 1 in the SO (see again the representative Figure
2.3) is expressed in more precise terms by the following condition:

(ecl): max(¢,es)(7) < max(¢))(7) for all wind stresses 7 > 0 in the SO.

Figure 2.5 shows the maximal transport values of the residual streamfunction, max (¢, )(7),

and the maximal transport values of the Eulerian streamfunction, max(¢)(7), in the SO

(left, thick and thin solid red lines). Note that max(:)(7) increases with a slightly larger
slope than max(—7/f) (thin black line) due to the impact of Reynolds stresses. Addition-

ally to (ecl) we find that the relation between max(1,.s) and max (1) can be characterised

by a second condition:

35



2 Towards the impact of eddies on the response of the Southern Ocean to climate change
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Figure 2.5: Left: maximal transport values [Sv] of the residual streamfunction ., the
Eulerian streamfunction ¢ and —7/f at —150m depth between the southern
boundary and y|y+—o (around y = 1100km) for the eddy-permitting ACC model
configuration with different horizontal resolutions. Thick red: .. for ARy,
magenta dashed: ,..s for ARy, magenta dash-dot: .., for ARj3, thin red:
o for ARy, blue dashed: 9 for AR,, blue dash-dot: ) for ARjs, thin black:
—7/f. Black dots denote data points. Right: the corresponding mean eddy
diffusivities K [10m?/s] and isopycnal slopes 5 [~107%]. Averages are taken
at —200m depth and between 110km and 910km.

(ec2): Or(max(yes)) < Or(max(¢))) for all wind stresses 7 > 0 in the SO.

That is, not only the absolute value but also the increase of max(i,.s) is generally
smaller than that of max(z)). Moreover, focusing on max(t/,.s) in relation to itself, a
tendency (i.e. a gradual and not an abrupt transition) towards a state of relatively little
change in transport of the residual MOC for higher wind stresses becomes obvious: in
contrast to the linear increase of the Eulerian MOC 1), the increase of the residual MOC
Ures reduces with increasing wind stress. This is expressed in more precise terms by the

following condition:
(ec3): 9?(max(¢es)) < 0 for all wind stresses 7 > 0 in the SO.

In other words, the ability of the eddy field to compensate the increase of the Eulerian
streamfunction 1) rises with increasing wind stress and may lead to mutual neutralisation
and therewith to a complete wind stress insensitivity of the residual MOC. However we

note, that for our wind stress range a state of total compensation between Euler and eddy
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MOC is not reached but the residual MOC is still significantly increasing for increasing
wind stress.

The behaviour of the residual MOC regarding different wind stresses, characterised by
the conditions (ecl), (ec2) and (ec3), is what we call the eddy compensation effect®. Con-
dition (ecl), namely a leading order balance between eddy-driven and wind-driven circu-
lation, was described first by Johnson and Bryden (1989) in its extreme form of vanishing
residual circulation (see also Karsten et al. (2002)). Conditions (ec2) and (ec3), that actu-
ally describe the response of the residual MOC to changing winds, are less well considered.
Hallberg and Gnanadesikan (2006) qualitatively noted an asymmetry in the response of
the residual MOC to whether the wind stress was increased or decreased by 20% relative to
a reference state. Here we give a more quantitative description of the eddy compensation
effect for a broad range of realistic wind stresses.

In the adiabatic interior, the eddy-driven circulation is given by equation (2.15), ¢* =
Ks. That is, ¥* and therewith the eddy compensation effect is determined by two factors:
the eddy diffusivity K and the isopycnal slopes s, which we will consider now. Figure 2.6
(upper row) shows the eddy diffusivity K, diagnosed from the flux-gradient relationship

2 2

(2.8), for three different wind stress amplitudes 7, = 0.5 X 1074m?2s™2, 7 = 1 x 10~*m?s~

and 73 = 1.5 x 107*m?s2

in the SO of our eddy-permitting idealised numerical model. K
is generally positive but shows clearly strong spatial variations. Meridionally, K is smallest
at the southern boundary®. It then increases northward; in the latitude band between the
wind stress maximum and maximal FK FE, K reaches its maxima. Towards the northern
boundary K decreases again. In contrast to the FKFE, K is maximal near the bottom
boundary layer and decreases upwards (and again increases strongly in the mixed layer,
not shown). With increasing wind stress, K also increases while the spatial structure of K
is maintained. The maxima of K increase from about 3500m?/s to about 7500m?/s.

Figure 2.5 also shows K averaged meridionally at —200m, K (right, thick solid red line).

5 We note, that the term eddy compensation has to be distinguished from the term eddy saturation.
While the former is related to the residual MOC as described in this study following Hallberg and
Gnanadesikan (2006), the latter is related to the circumpolar ACC transport as used in Hallberg and
Gnanadesikan (2001). Eddy saturation refers to a dynamical state of the SO in which increases in
wind stress do not alter the zonal transport as suggested by Marshall et al. (1993); Straub (1993).
Nevertheless, also the residual MOC may reach a state of complete wind stress insensitivity. However,
note that while saturation regarding different wind stresses may apply to zonal transport, it does not
necessarily follow that the residual MOC is in a state of complete wind stress insensitivity and vice
versa.

Note that this stands in strong contrast to the structure of the isopycnal slopes s (which are largest at
the southern boundary, see below) and therefore rejects a parameterisation of K proportional to s as
proposed by Marshall and Radko (2003).

6
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K increases with increasing wind stress and, similar to the residual MOC, the increase of
K diminishes monotonically with increasing wind stress for the wind stress range under
consideration, that is 9?K < 0. The maxima of K (not shown) show qualitatively the
same behaviour. We further note, that also the EK E averaged at 200m depth (EK E, not
shown) has a similar dependency on 7 as K. Both, 9,K (1) and 0, EK E(7), are monoton-
ically decreasing functions, similar” to the residual MOC. Therefore, the dependency of K
(and EKFE) on 7 has to be clearly distinguished from the corresponding response of the
eddy streamfunction ¢* (measured via max(1)) — max(t,c,)), which shows monotonically
increasing increases, 02 [max(y)) — max(¢y,es)| & —0? max(¢yes) > 0 (as demonstrated in
Figure 2.5, left). It becomes clear that the sensitivity of the isopycnal slopes s has to be

considered too in order to understand ¢* (see (2.15)), as we will see now.

Figure 2.4 also shows the zonal and time mean buoyancy distribution for three different

2 =1x10"*m2?s2and 73 = 1.5x 10" *m?2s72

wind stress amplitudes 7 = 0.5 x 10~ *m?s~
in the SO of our eddy-permitting idealised numerical model. The slopes of the isopycnals
are (absolutely) increasing with increasing wind stress throughout the whole interior of
the SO while the spatial structure remains. Figure 2.5 also shows the isopycnal slopes
s averaged meridionally at —200m, 5 (right, thin solid red line). The increase of the
isopycnal slopes s for different wind stresses is nearly constant, 0,5 ~ const. There is
no tendency towards a fixation of the isopycnal slopes 5 for the wind stress range under
consideration. This behaviour is consistent with equation * = K, as given by (2.15), and
our previous results for ¢* and K, by interpreting max (1)) — max(t,..,) via® K3: while 9, K
is monotonically decreasing and 9,5 = const., the absolute value of 9,(K3) (not shown) is
monotonically increasing”. Hence, both K and s are relevant in order to obtain the correct
sensitivity of the eddy streamfunction ¥* towards changing wind stress.

Nevertheless, although the response towards changing wind stress of the eddy stream-
function 9* is qualitatively different from the corresponding response of K, it is the eddy

diffusivity K that quantitatively dominates the sensitivity of ¥* ~ Ks towards increasing

" Note that also an eddy length scale L.q = K(EKE)™°® (not shown), defined via the mixing length
approach (2.9), shows the same behaviour: L.q is increasing with increasing wind stress from around
10km (for 1p) to around 20km (for 7¢) with monotonically diminishing increases, that is 92 L.4 < 0 for
7> 0.

8 Note that the equivalence between the values of Figure 2.5 (left) and Figure 2.5 (right) is quantitatively
not exact since the values of the former are taken at fixed points while the values of the latter denote
averages. Nevertheless, K5 shows qualitatively the same behaviour as max(z)) — max(¢.c).

9 Mathematically we have: 0,K > 0, 0°K < 0, 3 < 0 and 0,5 ~ const < 0, hence 02(K3) ~
2(0.K)(0,3) +302K. Tt follows that 302K < |2(0,K)(9,35)| has to hold, which is not trivially the

case.
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Figure 2.6: Zonal and time mean eddy diffusivity K [m?/s] for three different wind stress
amplitudes (from left to right) 7, = 0.5 x 107m?s™2, 75 = 1 x 107*m?s™2 and
73 = 1.5x107*m?s72 from (upper) the eddy-permitting idealised model and the
parameterised idealised ACC model using the closure of Eden and Greatbatch
(2008), given by (2.12), with (middle) ¢ = 4 and (lower) ¢ = 2. The contour
intervals are 250m?/s and the 2500m?/s line is thick.

wind stress in our experiments. The relative increases of the eddy diffusivity K are much
larger than that of the isopycnal slopes s for the wind stress range under consideration.
Therefore, presuming small linear increases of the isopycnal slopes, the eddy diffusivity K
seems to be the important quantity in order to understand the sensitivity of ¢* and ;s

to changing winds.
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Figure 2.7: Zonal and time mean (upper) residual streamfunctions (¢.s), (middle) buoy-

ancy distributions (b) and (lower) eddy diffusivities (K') from the idealised ACC
model for 7, = 1 x 107*m?s™2 with different horizontal resolutions (from left
to right): ARy = 5km, ARy = 10km, ARy = 20km. The contour intervals
are (upper) 0.25v, (middle) 0.001 m/s? and (lower) 250m?/s. Thick lines are
(upper) zero lines, (middle) 0.007 m/s? lines and (lower) 2500m? /s lines.

2.5.2 Impact of horizontal resolution

Ocean model setups may have to represent larger spatial domains than our idealised model
configuration. In such a case it may be necessary to use coarser resolutions. This section
documents the effects of such coarsening. Figure 2.7 shows 9.5 in the SO of the eddying
models with 7 = 1 x 107*m?2s2 for AR, = 5km, ARy, = 10km, and AR; = 20km.
The circulation pattern of the residual MOC, with a negative circulation cell spanning

the southern and deep regions of the ACC part and a positive circulation cell extending
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over the upper, northern part, is qualitatively the same in all three cases. The spatial
structure of both components, the wind-driven (1) ~ —7/f, not shown) and t he eddy-
driven MOC (¢* ~ Ks, not shown), is also almost unchanged. However, with decreasing
horizontal resolution the depth of the positive residual circulation cell is increased. The
positions of max(iy.s) and i..s = 0 move towards the south (for 7 < 73) and also the
position of max (1)) moves southward, closer to the position of max(—7/f), reflecting the
decreasing impact of Reynolds stresses. In contrast, the strength of the residual circulation
is almost unchanged for coarser horizontal resolutions. This almost complete insensitivity
of the magnitude of the residual MOC to our range of coarser horizontal resolutions is also

documented in Figure 2.5. Both, max(t,.s) (left, magenta lines) and max(¢)) (left, blue
lines) for AR, (dashed) and AR; (dash-dot), are very close to max(t,.,) and max(z)) for
ARy. In case of AR, the differences to max(t,.s) for ARy are under 2%, while in case of
ARy the differences increase to about 6 —8% for high wind stresses (7 > 73). Consequently,
also the respective effective compensation due to the eddy field is nearly the same for all
three cases. Only for higher wind stresses the case ARj3 tends to slightly overestimate the
residual MOC due to both, a slight underestimation of the Eulerian MOC 1 and a slightly
stronger underestimation of the eddy-driven MOC ¢* (in the region of the positive residual

MOC).

The almost complete insensitivity of ¢ to coarser horizontal resolutions may be expected,
since the Eulerian MOC is largely given by ¢ ~ —71/f, that is by resolution-independent
prescribed quantities. In contrast, the representation of the meso-scale eddy field strongly
depends on the resolution of the meso-scale in the model: the EKFE (not shown) decreases

with decreasing horizontal resolution!".

Similarly, the eddy diffusivity K decreases with
decreasing horizontal resolution, as shown in Figure 2.7 for 7 = 1 x 10~*m?s=2. The
maxima of K are decreasing from about 5500m? /s to about 5000m? /s for ARy and to about
3500m? /s for AR3. Also visible is that the maxima of K are shifted slightly northward with
decreasing horizontal resolution and split into two local maxima for AR3. However, the
spatial pattern of K remains the same for all horizontal resolutions under consideration.
Figure 2.5 also shows K at —200m for the cases ARy and ARs (right, dashed and dash-

dotted magenta lines). Like EKE' (not shown), K decreases with decreasing horizontal

10 Note that this behaviour is superimposed by the effect of an increased biharmonic viscosity Ap,
necessary for numerical reasons in case of lower horizontal resolutions, which acts to damp FKFE.

1 Also the eddy length scale L.qg = K(EKE)~°5 (not shown) shows an analogue behaviour: L4 decreases
with decreasing horizontal resolution, while still 92 L.4 < 0 holds and in case AR3 the eddy length scale

L.q appears to be nearly in a state of complete wind stress insensitivity for high wind stresses (7 > 73).
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resolution, while still 9? K < 0 holds. In case AR3 the eddy diffusivity K even appears to
be nearly in a state of complete wind stress insensitivity, tending towards a maximum of
K between 2500m? /s and 3000m? /s for high wind stresses (7 > 73).

In contrast to K (and EKE), the effective compensation due to the eddy field appears to
be nearly insensitive to the coarsening of the horizontal resolution'?. Again, this difference
may be understood by interpreting max(v)) — max(1,.,) via K3 (see (2.15)), that is the
corresponding behaviour of the isopycnal slopes. Figure 2.7 also shows the zonal and time

mean buoyancy distribution for 7, = 1 x 10™*m?2s~2,

The slopes of the isopycnals are
(absolutely) increasing with decreasing horizontal resolution throughout the whole interior
of the SO, while the spatial structure remains the same. Figure 2.5 also shows 5 at —200m
for the cases ARy and ARj (right, dashed and dash-dotted blue lines). The isopycnal
slopes 3 increase with decreasing horizontal resolution such that the product K3 remains
nearly constant. In case AR3 the isopycnal slopes 5 even behave qualitatively different to
the cases AR; and AR,: for ARj3 the isopycnal slopes s dominate the increase of the eddy
streamfunction ¢* &~ Ks for higher wind stresses (7 > 73), as K is nearly in a state of
complete wind stress insensitivity.

To conclude, the eddy compensation effect ((ecl)-(ec3)) is at work in all horizontal
resolutions under consideration and quantitatively nearly insensitive to the coarsening of
the horizontal resolution. However, the dependencies of the eddy diffusivity K (and EK E)
and the isopycnal slopes s on wind stress do depend on horizontal resolution and have to

be distinguished from the corresponding sensitivity of the eddy streamfunction v*.

2.5.3 Effects of different eddy diffusivity parameterisations

It is common practise in climate models to use the Gent and McWilliams (1990) meso-scale
eddy parameterisation (2.8) with a constant eddy diffusivity K. In order to assess the effect
of parameterising the meso-scale eddy field on the MOC of the SO we implement the Gent
and McWilliams (1990) parameterisation (2.8) in our numerical model with five different
constant values for K: Kjgo = 1000m? /s, Koo = 2000m? /s, Kspo = 3000m?/s, K0 =
4000m?/s, and Ksppo = 5000m?/s. However, since K shows strong spatial variations and
is sensitive to wind stress changes as shown in section 2.5.1, we also implemented the

flow-interactive meso-scale eddy closure developed by Eden and Greatbatch (2008), given

12 Note that our model with lowest resolution is still an eddy-permitting configuration. Of course, in case
the coarsening is proceeded until the meso-scale is unresolved, the eddy circulation ¥* will tend to
vanish and the residual MOC ,..s; will drastically change (ending up as the Eulerian MOC ).
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Figure 2.8: Mean (left) eddy diffusivities K [10°m?/s] and (middle, right) isopycnal slopes
5 [-1073] for the different idealised ACC model configurations. Averages are
taken at —200m depth and between 110km and 910km. Red: eddy-permitting
reference case ARy, blue thick: Kggi, blue dashed: Kggo, blue dash-dot:
Kgas, blue thin: Kggy, blue dotted: Kggs, black thick: Kiggg, black dashed:
K000, black dash-dot: K3gq9, black thin: Ky, black dotted: Ksgo9. Left black
dotted lines denote the corresponding constant eddy diffusivities.

by (2.12), in order to demonstrate and offer a parameterisation which produces an eddy
diffusivity closer to the K from the eddying model than a constant eddy diffusivity. We
used five different values for the dimensionless constant c¢: ¢y = 1, ¢ = 2, ¢3 = 3, ¢4 = 4,
and c; = 5. The corresponding eddy diffusivities are denoted by Kgg1, ..., Kgas.

Figure 2.6 shows the eddy diffusivity K of the eddy-permitting model and the eddy
diffusivities Kggs and Kgge, given by (2.12), for three different wind stress amplitudes
71 =05x10"*m?s2 7, =1x10*m?s 2 and 7, = 1.5 x 107*m?2s~2. Both, Kpq4 and
Kgao, capture the spatial variations qualitatively quite well: smallest values at the southern
boundary with a tendency towards vertical homogeneity are obviously reproduced. In the
region of large FKFE close to the center of the SO maxima near the bottom boundary
layer can be found, with decreasing values upwards and with a secondary maximum in the
mixed layer. In contrast to K from the eddying model the maxima of K are slightly moved
towards the northern boundary and to shallower depths (which becomes more pronounced
for larger ¢ and smaller wind stress); furthermore, the secondary maximum in K extends to
deeper depths. The deep maxima of K are generally underestimated by Kggo, while Kgao
changes from a slight overestimation for small wind stress (7 < 77) to an underestimation
for large wind stress (7 > 7) regarding the upper maxima. Kpggyq overestimates the
upper maxima for 7 < 74 and changes from a slight overestimation for small wind stress
(1 < 71) to an underestimation for large wind stress (7 > 73) regarding the lower maxima.

This is also documented in Figure 2.8 (left, blue lines) showing Kgq1, ..., Kpgs averaged at
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Figure 2.9: Zonal and time mean residual streamfunctions (,¢s) from the idealised ACC
model for 7, = 1 x 107*m?s72 and different model configurations: Kgg (upper
left), Kgpgs (upper right), Kigoo (lower left), Kzop0 (lower right). The contour
intervals are 0.2Sv and zero lines are thick.

—200m. Kgei, ..., K pas capture the response of K in the eddying model towards changing
wind stress qualitatively well: each K gei, ..., K pgs increases with increasing wind stress,
that is 0, K > 0, and further we find 83? < 0 in each case. But the parameterisation
(2.12) generally underestimates the quantitative sensitivity of K on wind stress (that is the
magnitudes of 9, K). For this reason K p¢1, which is close to the K from the eddying model
for small wind stress (7 < 71), is nearly insensitive to changes in wind stress for higher
wind stress, while K from the eddying model is still significantly increasing. The relative
increases of K pai,..., Kpas (not shown) are nearly identical, as expected from (2.12).

Therefore the eddy diffusivity parameterisation (2.12) in general, i.e. independent of the
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Figure 2.10: Percentages of the transport values of (left) the residual streamfunction
Yres and (right) the eddy streamfunction vy, = Ks at 150m depth and
y = 970km, from the parameterised idealised ACC model using (blue) the
closure of Eden and Greatbatch (2008), given by (2.12), and (magenta) using
constant eddy diffusivities. Values are taken relative to the eddy-permitting
reference setup AR; (red line). Blue thick: Kggp, blue dashed: Kgge, blue
dash-dot: Kggs, blue thin: Kggy4, blue dotted: Kggs, magenta thick: Kiggo,
magenta dashed: Ksgg, magenta dash-dot: K3p99, magenta thin: K4p00, ma-
genta dotted: Ksgqp-

choice of ¢, underestimates the sensitivity of K to wind stress. Hence, the parameterisation
(2.12) represents well the spatial structure of K and its qualitative response to increasing
wind stress which is, however, quantitatively underestimated.

Figure 2.9 shows the residual streamfunctions (1,.s) for the cases Kgg1, Keas, Kiooo,
K000 and fixed wind stress 75 = 1 x 107*m?s72 (the corresponding eddy-permitting result
is given in Fig. 2.4). All parameterisations reproduce qualitatively well the positive over-
turning cell (yellow-red): narrow streamlines reach from the deep northern boundary to the
southward surface. Quantitatively, the cases Kgg1 and Kigg have appropriate magnitudes
of the MOC but overestimate its depth, while the cases Krg3 and K3ggg underestimate
the magnitudes of the MOC and show appropriate depths of the positive overturning cell.
Depth and magnitude of the residual MOC are anti-correlated with the constant K (or ¢
in (2.12)): larger K (or ¢) reduce both, the magnitude and the depth, of the positive over-
turning cell; that is, we can anticipate that the isopycnal slopes s are decreased (shallower
MOC), while the parameterised eddy compensation is absolutely increased (reduced mag-
nitude of the MOC) for larger K (or ¢). Concerning the negative overturning cell (blue),

which is not in the focus of this paper, we note that all parameterisations underestimate
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the magnitudes of the MOC at depth as well as the slopes of the streamlines. That is, the
ability of a parameterisation to reproduce the negative overturning cell has to be evalu-
ated on its own. Moreover we note, that all parameterisations show a different boundary
layer behaviour than the eddy-permitting model. This is related to the fact that we use
adiabatic parameterisations which suppress meso-scale diapycnal mixing. Hence, from the
outset diabatic effects are smaller in the parameterised model configurations than in the

eddy-permitting model configuration.

In order to understand the sensitivity of the residual MOC of the parameterised models
on wind stress, we consider the percentages of the residual MOC taken at a fixed (represen-
tative) position in the SO, relative to the values of the eddy-permitting setup (Figure 2.10
(left)). Note that 1,5 is increasing for all parameterisations. Further, condition (ec3), in
this context 9?1),., < 0, is also at work in all parameterised models. However, it is obvious
in Figure 2.10 (left) that the response of the residual MOC towards increasing winds is
overestimated by each parameterisation. In general, the parameterised model using the
closure (2.12) shows a more appropriate response than using a constant K, which is, how-
ever, still far from perfect: on the one hand, large values of ¢ in closure (2.12) produce the
most adequate relative sensitivity of ¥, to 7, but the most incorrect magnitudes of ..
due to the excessively large K. On the other hand, for smaller values of ¢ the sensitivity of
Yres to T is similar to using Kjgg, while the magnitude of 1,5 is over- (under-) estimated

for larger (smaller) wind stress.

The parameterised models simulate the residual MOC only, which, however, can also

be conceptually decomposed into two parts: the Eulerian MOC and an eddy-driven

para
MOC ;,,,- We define them here intrinsically via ¢7,., = Ks and ﬂpam = Yres — Vparas
where all quantities refer to the parameterised model. The Eulerian MOC _pam (not shown)

is again given by the Ekman transport, that is ~ —7/f, although all parameterised

para
models underestimate the Eulerian MOC 1) of the reference case AR; by 5% — 20%. On
the other hand, all parameterised models tend to overestimate the response of the Eulerian

MOC towards increasing wind stress.

Figure 2.10 (right) shows ¢ ., for each parameterisation taken at a fixed (representative)
position in the SO, relative to the values of the eddy-permitting setup AR;. We find
that with increasing values of ¢ or K the eddy MOC ¢, absolutely increases, which
corresponds to the decrease of the residual MOC with increasing values of ¢ or K (Figure
2.10 (left)). For all parameterisations, we find 92|¢%,.,| > 0. However, the response of the

eddy MOC v7 ., is generally underestimated, so that for smaller wind stresses (7 < 72) the
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magnitudes of the eddy MOC of the reference case AR; tend to be overestimated (by over
200%), while for higher wind stresses (7 > 75) the magnitudes of the eddy MOC of the
reference case AR; tend to be underestimated. The underestimation of the response of the
eddy MOC towards increasing winds reduces with decreasing values of ¢ or K: Kgg; and
K900 show nearly correct responses of the eddy MOC, but permanently underestimate the
magnitudes of the eddy MOC by 25% — 45%, with the constant eddy diffusivity case being
worse.

The eddy MOC o

para

is constituted by two factors, the eddy diffusivity K and the
isopycnal slopes s. The averages of both at —200m are shown in Figure 2.8 for each pa-
rameterisation. In lieu of the underestimation of the sensitivity of K to 7, the response
of the isopycnal slopes towards increasing wind stress is overestimated. For both parame-
terisations, the intimate relation between eddy diffusivity and isopycnal slopes, as already
discussed in section 2.5.2, is demonstrated again: the underestimated response of K cor-
responds an overestimated response of 5, such that d,|K3| > 0. Hence, increasing the
constant values of K or ¢, that is the eddy diffusivity, (absolutely) decreases the magni-
tude of the isopycnal slopes, that is dk[s| < 0 or 0.|5|] < 0, as it is obvious in Figure
2.8. And, similar to the eddy diffusivity, the closure (2.12) represents the response of the
isopycnal slopes more adequately (smaller slopes) than the corresponding constant eddy
diffusivity case: for a constant eddy diffusivity it is only the isopycnal slope which captures
the response of the eddy MOC towards increasing winds. We also note that, in the case
that a parameterisation captures the correct eddy diffusivity K at fixed point, the isopy-
cnal slopes are nearly correct, but never exactly correct, since the eddy diffusivity values
in the environment of the point are related to the isopycnal slopes. Therefore, also the
eddy MOC ¢* = Ks is never exactly (but nearly) correct at a location of correct eddy
diffusivity K.

2.5.4 Sensitivity of the diagnostic model

In order to demonstrate that our conceptual framework of the interior residual MOC of
the SO above topography, given by the diagnostic model of Marshall and Radko (2003)
(and Olbers and Visbeck (2005)) we presented in section 2.3.3, is appropriate as long as the
correct eddy diffusivity is taken into account, we compare the application of Eq. (2.16) with
our numerical model results. Figure 2.11 shows the residual streamfunction ;.. in the SO
for three different wind stress amplitudes 7, = 0.5 x 10™*m?s72 (left), 7, = 1 x 10™*m?s72

(right) and in between 7 = 0.75 x 107*m?s™2. On the one hand, 1), is given by the results
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

of the eddy-permitting numerical model for case AR (upper). On the other hand, ¢,
is given by prescribing ¢,.s(z = —150m) via the results of the eddy-permitting numerical
model (case AR3) and applying equation (2.16) with K given by the eddy-permitting
numerical model for case AR3 (middle) and by K = 1000m?/s (lower).

The diagnostic model (2.16) in conjunction with the diagnosed eddy diffusivity K re-
produces the extent of the positive and negative overturning cells and the slopes of the
streamlines very well for each wind stress. In particular, the slight deepening of the zero
line (thick) is captured almost perfectly. Small deviations from the eddy-permitting nu-
merical model results represent diabatic effects not included in the adiabatic diagnostic
model (2.16). Therefore, using the correct eddy diffusivity in the diagnostic model (2.16)
it is able to reproduce the essential residual MOC of the SO and its sensitivity to changing
winds.

In contrast, using K = 1000m?/s in the diagnostic model (2.16) the reproduction of the
residual MOC of the SO and its response to changing winds is inadequate. The streamlines
are much too steep. Therefore the positive overturning cell reaches much deeper and has a
bigger extent than in the eddy-permitting numerical model results. Furthermore, the steep-
ening and deepening of the streamlines due to increasing winds are overestimated. That
is, the response to increasing winds of the diagnostic model (2.16) using K = 1000m?/s
suggests that much deeper water upwells than in the case with the correct eddy diffusivity.
We also note that in case of a constant eddy diffusivity, the diagnostic model (2.16) mis-
represents the negative overturning cell: the negative overturning cell is shifted towards
the north and does not reach the southern boundary anymore. This is due to the sign of
the curvature of the streamlines of the diagnostic model (2.16) with K = 1000m?/s which
is different for the streamlines of the eddy-permitting numerical model and the diagnostic
model (2.16) with the correct eddy diffusivity.

2.6 Summary and conclusions

We have described the sensitivity of the residual MOC .5 in the SO and the corresponding
eddy diffusivity K towards changing wind stress by using the results of an eddy-permitting
idealised numerical ACC model (at ARy = 5km horizontal resolution). The residual circu-
lation strengthens with increasing wind stress. The wind-driven component ) is increasing
nearly linearly according to 1) ~ —7/f, whereas the (absolute) increase of the eddy-driven

component ¥* &~ Ks amplifies with increasing wind stress, such that we could describe
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Figure 2.11: Zonal and time mean residual streamfunctions (,¢s) from (upper) the eddy-
permitting idealised ACC model for case ARz and from the application of
equation (2.16) with (middle) an eddy diffusivity diagnosed from the eddy-
permitting model and (lower) prescribing a fixed eddy diffusivity of 1000m?/s.
The wind stress amplitudes are (left) 7 = 0.5 x 107*m?2s72, (right) 7 =
1 x 107*m?2s72 and in between 7 = 0.75 x 10~*m?2s~2. The contour intervals
are 0.25v and zero lines are thick.

the sensitivity of the residual MOC on wind stress by three aspects, termed as eddy com-
pensation effect: namely, the general behaviour of 1* to oppose 1 such that (ecl) the
absolute value and (ec2) the increase of the residual MOC are generally smaller compared
to ¢ and (ec3) the increase of the residual MOC ,..; reduces with amplifying winds (i.e.
92 max(1),cs) < 0). Furthermore, magnitude and depth of the residual MOC are correlated.
(ec3) opens the possibility, that the residual MOC may become completely insensitive to

wind stress. However we note, that for our wind stress range a state of total compensation
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

between Euler and eddy MOC is not reached but the residual MOC is still significantly
increasing for increasing wind stress. We thus have not demonstrated with our model

experiments a complete insensitivity of the MOC towards winds.

The corresponding eddy diffusivity K is characterised by a manifold spatial structure and
by a strong sensitivity towards changing winds: K (and EKFE) increases with increasing
wind stress and, similar to the residual MOC, the increase of K (and EKE) averaged at
200m depth diminishes monotonically with increasing wind stress, i.e. 92K < 0, for the
wind stress range under consideration. Consequently, the sensitivity of the eddy diffusivity
K (and EKF) to wind stress has to be distinguished from the corresponding response
of the eddy streamfunction v* ~ Ks. It turns out that a nearly constant increase of
the isopycnal slopes s, though quantitatively much smaller than the increase of the eddy
diffusivity K, is relevant in order to capture the correct sensitivity to wind stress of the

product Ks.

We also document the effects of coarsening the horizontal resolution by considering our
eddy-permitting model setup at ARy = 10km and AR3 = 20km horizontal resolution.
While the depth of the positive residual circulation cell increases with decreasing horizon-
tal resolution, the strength of the residual MOC )., the Eulerian MOC v and hence the
effective eddy compensation are almost unchanged for our coarser horizontal resolutions.
Hence, the eddy compensation effect ((ecl)-(ec3)) is at work in all horizontal resolutions
under consideration. While the almost complete insensitivity of 1 to coarser horizontal
resolutions may be expected (from ¢ ~ —7/f), the almost unchanged eddy compensation
is not so obvious, since the representation of the meso-scale eddy field in general strongly
depends on the resolution of the meso-scale in the model; it is due to the intimate rela-
tion between eddy diffusivity K and isopycnal slopes s which both strongly depend on
horizontal resolution. We indeed find that the eddy diffusivity K (and FKFE) decreases
with decreasing horizontal resolution, while the slopes of the isopycnals are (absolutely)
increasing with decreasing horizontal resolution, such that the product K3 remains nearly
constant. Consequently, the dependency of K (and EKFE) on horizontal resolution has
to be distinguished from the corresponding (in)sensitivity of the eddy compensation. It
follows that eddy-permitting ocean models with relatively low resolution may simulate an
adequate eddy compensation effect, but misrepresent the changes in eddy diffusivity K,

the isopycnal slopes s, ACC transport and isopycnal diffusivities (relevant e.g. for C'O,).

In climate models it is necessary to parameterise the meso-scale eddy field, that is the

eddy diffusivity K, due to too coarse resolution. In order to assess the effect of param-
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eterising the meso-scale eddy field on the residual MOC of the SO, we implemented the
Gent and McWilliams (1990) parameterisation, as given by Eq. (2.8) and widely used in
state-of-the-art climate models, in our numerical model. On the one hand, we specified
the eddy diffusivity K by different constant values; on the other hand, we implemented
the flow-interactive meso-scale eddy closure by Eden and Greatbatch (2008), given by Eq.
(2.12). We find that the parameterisation (2.12) represents well the spatial structure of
K and its qualitative response to increasing wind stress which is, however, quantitatively
underestimated. The latter effect becomes even more clear for constant eddy diffusivity
parameterisations, since they lack any sensitivity by definition. Consequently, for both,
the closure (2.12) and any constant K, there will be wind stress ranges of over- or under-
estimation of the eddy diffusivity K. In the parameterised models, eddy diffusivity and
isopycnal slopes are intimately linked as well: the underestimated response of K corre-
sponds an overestimated response of 3, such that 9,|K3| > 0, with the closure (2.12) being
more adequate than a constant K parameterisation. However, for all parameterisations
the response of the eddy MOC of the eddying model (AR;) tends to be underestimated
by the parameterised eddy MOC v’ = Ks.

para

The residual MOC behaves accordingly in the parameterised models. We find that all pa-
rameterisations reproduce the positive overturning cell for a fixed wind stress qualitatively
well. However, the response of the residual MOC towards increasing winds is overesti-
mated by each parameterisation, with the closure (2.12) being slightly more adequate than
a constant K. Consequently, each parameterisation will always under- or overestimate
the residual MOC in a certain wind stress range. Hence, our results clearly demonstrate
that the sensitivity of the residual MOC towards changing winds crucially depends on
the corresponding sensitivity of the eddy diffusivity K. It is indispensable to incorporate
the correct sensitivity of the eddy diffusivity in order to reproduce the sensitivity of the

residual MOC towards changing winds.

In order to demonstrate that our conceptual framework of the interior residual MOC of
the SO above topography, given by the diagnostic model of Marshall and Radko (2003) (and
Olbers and Visbeck (2005)), is appropriate as long as the correct eddy diffusivity is taken
into account, we compared the application of equation (2.16) with our numerical model
results for case AR;. We found that using the eddy diffusivity (and t¢,.s(z = —150m)) of
the numerical model in the diagnostic model (2.16), it is able to reproduce the essential
residual MOC of the SO and its sensitivity to wind stress. In contrast, using K = 1000m?/s
in the diagnostic model (2.16) the reproduction of the residual MOC of the SO and its
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2 Towards the impact of eddies on the response of the Southern Ocean to climate change

response to changing winds is inadequate: steepening and deepening of the streamlines
due to increasing winds are overestimated.

We have demonstrated that the correct behaviour of the eddy diffusivity in coarse-
resolution climate models is essential for a correct simulation of changes in the SO and thus
a thorough assessment of climate change. In particular, the simulation of the residual MOC
and the related C'O, content in the SO and its response to changing winds, as e.g. done
in Le Quéré et al. (2007) and Lovenduski et al. (2008), depends crucially on the subgrid-
scale parameterisation. Up-to-date eddy diffusivity parameterisations, as demonstrated
in this study, lead to under- or overestimations of the residual MOC and the related CO,
content in the SO for different wind stresses. Our results strengthen the necessity of further

improvements of meso-scale eddy diffusivity parameterisations.
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3 Standing eddies in the meridional

overturning circulation

This chapter is an earlier draft of the paper “Standing eddies in the meridional overturning

circulation” accepted and in production by the Journal of Physical Oceanography.
Clitation: Viebahn, J. and C. Eden, 2012: Standing eddies in the meridional overturning

circulation, J. Phys. Oceanogr., doi: 10.1175/JPO-D-11-087.1. (¢) American Meteorolog-

itcal Society. Reprinted with permission.

3.1 Abstract

The role of standing eddies for the meridional overturning circulation (MOC) is discussed.
The time-mean isopycnal meridional streamfunction is decomposed into a time- and zonal-
mean part, a standing eddy part and a transient eddy part. It turns out that the con-
struction of an isopycnal MOC with an exactly vanishing standing eddy part has to be
performed by zonal integration along depth-dependent horizontal isolines of time-mean
density. In contrast, zonal integration along time-mean geostrophic streamlines generally
only leads to an isopycnal MOC with a reduced standing eddy part.

Using the results of an idealised Southern Ocean model, it is also demonstrated that ap-
plying density contours or geostrophic streamlines of a certain depth (“contour-depth”) at
each depth, may represent an acceptable practical simplification (“orthogonal approxima-
tion”): On the one hand, the standing eddy part vanishes exactly only at the contour-depth
(except using the ageostrophic surface layer and geostrophic streamlines), but on the other
hand, for adequate contour-depths the overall standing eddy part is significantly reduced
(but not vanishing).

Furthermore, it is found that the effect of changing the zonal integration path from
latitude circles to curvilinear paths on the zonally averaged density is of the same order as

changing from Eulerian to isopycnal averaging.
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3 Standing eddies in the meridional overturning circulation

3.2 Introduction

The meridional overturning circulation (MOC) of the Southern Ocean (SO) appears to be
an important part of the global overturning circulation system (Kuhlbrodt et al., 2007):
On the one hand, the inter-basin connection featured by the SO is a necessary condition
for a global circulation to be possible. On the other hand, the watermass transformations,
driven by wind and buoyancy forcing in the SO, establish connections between deep and
surface waters in the SO and hence close the global meridional circulation cells (Rintoul
et al., 2001).

A compact description of the MOC of the SO is conventionally given by a zonal-mean
meridional streamfunction. However, it is well known that different integration procedures
lead to different pictures of the MOC, since they extract different physical aspects of the
overall circulation. In order to construct a zonal-mean meridional streamfunction two
decisions have to be made: First, a transport integration criterion has to be specified.
Second, the zonal integration paths have to be specified, which determine the meridional
transport velocity as the meridional cross-path component of the overall velocity field.

Latitude circles represent the simplest type of zonal integration path. The Fulerian
streamfunction A(y, z,) is then the zonally integrated meridional transport of fluid across
a given latitude y and below the constant height surface z,. However, Doos and Webb
(1994) demonstrated that the overturning pattern of the Eulerian streamfunction A gives
rise to spurious diapycnal flow in the SO (the “Deacon cell”) and hence fails to give an
adequate picture of the MOC of the SO.

Changing the transport integration criterion 'below a constant height surface’ to 'denser
than a certain instantaneous density’ leads to isopycnal averaging (McDougall and Mcln-
tosh, 2001; Nurser and Lee, 2004a). The isopycnal streamfunction 1¥r(y,b,) gives then the
zonally integrated meridional transport of fluid denser than a given density b, across a
given latitude y. The isopycnal streamfunction ; appears to capture the essential be-
haviour of the MOC of the SO, since the ocean is largely stable stratified and watermasses
mainly remain in a fixed density class while travelling in the ocean interior (Webb and
Suginohara, 2001).

In the SO, topographic features force the circumpolar flow (the Antarctic Circumpolar
Current (ACC)) to carry out permanent meridional excursions on its circumpolar path.
Therefore, it has been argued that calculating the transport across time-mean streamlines
rather than latitude circles more effectively reveals the physical nature of the meridional

overturning (Marshall et al., 1993; Treguier et al., 2007). For example, in the realistic high
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3.2 Introduction

resolution modelling study of Treguier et al. (2007) (see also Hallberg and Gnanadesikan
(2006); Lee et al. (2007)) in the upper 500 m poleward surface flow shows up in the
SO in case the zonal integration is performed along latitude circles, apparently against
the wind-driven equatorward Ekman transport. Indeed, Treguier et al. (2007) show that
in the meridional circulation averaged along contours of the barotropic streamfunction,
the surface flow becomes equatorward in the SO. Hence, they suggest that in the zonal
integration one has to follow time-mean streamlines such that the correlations resulting

from the permanent meanders of the ACC (“standing eddies”) vanish.

In addition, further reasons to minimise standing eddies in the MOC have been put for-
ward: It was suggested that a standing-eddy-free framework could give more lucidity in the
consideration of physical budgets (e.g. momentum, potential vorticity, tracer) (Marshall
et al., 1993). Moreover, in non-eddy-permitting models (e.g. Marshall and Radko (2003)
and Olbers and Visbeck (2005)) eddies have to be adequately parameterised (Viebahn and
Eden, 2010). Of course, the corresponding approaches try to parameterise transient eddies

and not a part of the time-mean circulation.

Various studies agree in using the term “time-mean streamlines”, but they differ in the
specification of the zonal integration paths. While Ivchenko et al. (1996) and Treguier et al.
(2007) integrate along contours of the barotropic streamfunction, Marshall et al. (1993)
use contours of the Montgomery streamfunction, Karsten and Marshall (2002) use surface
geostrophic streamlines (using mean sea surface height) and Polton and Marshall (2007)
integrate along Bernoulli potential contours. In every study a single set of horizontal paths
(surface contours) is used for each depth, although Lee and Coward (2003) notice that
there “are problems in using surface streamlines throughout the water columns since flows

below the surface do not exactly follow the surface streamlines.”

In this study, we want to clarify the idea of neutralising the effect of the permanent
meanders of the ACC (“standing eddies”) on the MOC of the SO by a redefinition of the
zonal integration paths, in order to provide a consistent concept. In section 3.3 we describe
an idealised model of the SO and our set of experiments, which we will use for illustrative
purposes. After the presentation of the standard zonal-mean meridional streamfunctions,
we introduce the isopycnal standing eddy streamfunction 1&} in section 3.5.1. Finally,
in section 3.5.2 we discuss both, different approaches to minimise @/AJ} via different zonal
integration paths and the corresponding effects on the overall MOC. Section 3.6 provides

a summary and section 3.7 conclusions.
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3 Standing eddies in the meridional overturning circulation

3.3 ldealised numerical SO model and experiments

In this study we use the idealised SO configuration of CPFLAME!, an eddy-permitting
primitive equation model consisting of a zonally reentrant channel, which is connected to
a northern ocean basin enclosed by land (see e.g. Fig. 3.6 a)). The equations are formu-
lated in Cartesian coordinates and the beta-plane approximation is used. The domain of
the idealised SO model extends over L = 2520km in the zonal and meridional direction,
with AR = 20km horizontal resolution and 40 vertical levels with 50m thickness (1900m
maximal water depth). We simulate only buoyancy in the model, which might be thought
as proportional to temperature. On the one hand, the circulation in the model is driven by
a sinusoidal eastward wind stress over the channel with a magnitude of 7 = 1 x 10~4m?s2.
On the other hand, a surface restoring boundary condition for buoyancy b is applied. The
corresponding target buoyancy increases northward over the channel, remains constant
over the southern half of the northern ocean basin and decreases while approaching the
northern end of the domain. Boundary conditions on the northern and southern edges of
the domain are simply given by no-flux conditions. Hence, the watermass distribution is
solely determined by the surface boundary conditions. Viebahn and Eden (2010) showed
that our setup with AR = 20km horizontal resolution captures a qualitatively adequately
resolved meso-scale eddy field (compared to model results with higher horizontal resolu-
tion). Further details of our numerical model setup may be found in Viebahn and Eden
(2010).

We consider two different experiments. In the first experiment, we impose a simple hill-
like topographic feature in the channel: The top of the hill is located at z = —950m and
x =0 (and z = 2520km respectively). According to an exponential map the height of the
hill decreases eastward (westward), such that at the longitudes of the northern ocean basin
(from z = 850km to z = 1690km) the channel has a flat bottom. We refer to this setup
as the hill case. The hill case is of primary interest in this study. In order to illustrate the
impact of topography, we contrast the hill case by an experiment with a completely flat
bottomed channel. This is the so-called flat case. In both cases, the model has been run
for about 240 years in order to reach a statistically steady state. In the following, each

time-mean is performed over the last ten years (that is, the years 231 — 240).

Lhttp: / /www.ifm.zmaw.de/~ cpflame
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3.4 Eulerian streamfunction and mean buoyancy

A simple way to produce a zonal-mean meridional streamfunction is based upon Eulerian
averaging along latitude circles, that is, integration over the zonal coordinate x is performed
at constant depth z and constant latitude y. The Eulerian zonal-mean of the buoyancy
field b(x,y, z,t) is given by (Nurser and Lee, 2004a)

[b](y, 2,t) = L /eas bd (3.1)

LZ’ west

where L,(y, z) denotes the zonal length and squared brackets denote the zonal-mean. The
Eulerian meridional streamfunction A is the zonally integrated southward transport of fluid

across a given latitude and below the constant height surface z,,

Ay, zq,t) = —// vdrdz = —/ L,[v] dz . (3.2)
(2,2):2<zq 2<zq

In the following, we will also discuss the time-mean denoted by an overbar. Since the
conditions of integration are not time-dependent, Eulerian zonal-mean and time-mean

commute, that is,

east
[b](y, 2) = [b} (v,2) = - b dr . (3.3)
x Jwest
The time-mean Eulerian streamfunction A is thus related to the time-mean meridional

velocity v,

Ay, z) = —//( " dedz:—/< L.[v] dz . (3.4)

More precisely, it is only the Eulerian zonal-mean and time-mean meridional velocity [7]
which determines the time-mean Eulerian streamfunction A, so that all deviations of the
zonal and temporal means are neglected in the calculation of A. This is the essential
difference between the Eulerian streamfunction A and the isopycnal streamfunction )y,
which we discuss in section 3.5. In case of zonal integration along latitude circles, A and

A in general are streamfunctions, since it holds? d,A = —L,[v] and 9,A = L,[w].

2 Zonal integration along latitude circles of the continuity equation (V -v = 0) above topography in
a zonally reentrant channel immediately gives 0y (L[v]) + 0.(Lg[w]) = 0. In case of topographic or
continental barriers, given by xp(y, z), the cross-barrier velocity vanishes due to the no-normal-flow
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Figure 3.1: Top: Time-mean Eulerian meridional streamfunction (A) with a contour inter-
val of 1 Sv and thick zero lines for the flat (a) and the hill (b) case. Bottom:
Eulerian zonal- and time-mean buoyancy distribution ([b]) with a contour in-
terval of 0.001m/s* and a thick 0.007m/s? line for the flat (c) and the hill (d)
case.

Figure 3.1 shows the time-mean Eulerian streamfunction A for both the flat case and
the hill case. In the flat case, the meridional time-mean flow primarily takes place in the
surface and bottom Ekman layers, while in between the flow in the latitude-depth plane
is mainly vertical. As can be seen from the zonally integrated zonal momentum balance
(Olbers and Ivchenko, 2001; Viebahn and Eden, 2010), in the zonally unblocked region
only ageostrophic meridional transports remain (which are small because the Reynolds

stress divergence is small), while at blocked depths geostrophically balanced transports

boundary condition. That is, (u — v0yzp — WO, 2B)|(2s,y,-) = 0 holds and by using the Leibniz integral
rule one obtains the same result for the zonally integrated continuity equation.
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3.5 Isopycnal streamfunctions

are supported by east-west pressure differences. Accordingly, in the hill case an Ekman
bottom boundary layer is absent, but the meridional surface Ekman transport is balanced
by a geostrophic meridional return flow below the hill depth in the SO. Above the top of
topography, the Eulerian streamfunction A of the hill case becomes similar to A in the flat
case. Notice that a second local transport maximum in Fig. 3.1 b) (around y = 400km and
z = —800m) indicates the meridional meanders in the time-mean flow field (see Fig. 3.5
discussed in section 3.5.2), and hence the impact of topography on the circulation above
topography.

The MOC in the SO of Fig. 3.1 a,b) has been typified as the Deacon cell (D66s and
Webb, 1994), which fails to give a correct picture of the net transport of watermasses in the
SO. This becomes obvious by comparing A with the buoyancy field [b] (Fig. 3.1 ¢,d)). In
both the flat case and the hill case isopycnals are strongly tilted across the SO and outcrop
in the SO. For the hill case, watermasses below the top of the hill are slightly warmer and
less stratified than in the flat case, but in contrast to A, there is no qualitative difference
between the buoyancy distributions [b] of the hill case and the flat case. However, since
the interior ocean circulation (except in convective regions) is likely to be nearly adiabatic
(Webb and Suginohara, 2001), the flow should mainly be oriented along mean isopycnals.
Obviously, the A does not advect [b], since A suggests unrealistically strong diapycnal
flow in the interior. Nevertheless, the Eulerian streamfunction A may be considered as a
constitutive part of the overall MOC of the SO (given by 1)), namely as the time- and

zonal-mean part, as we discuss in section 3.5.1.

3.5 Isopycnal streamfunctions

The isopycnal meridional streamfunction v; (for zonal integration along latitude circles)
is the southward volume transport with buoyancy b smaller than a given value b, across a

given latitude y (Nurser and Lee, 2004a),

Uiy, by, t) = // vdrdz . (3.5)
(2,2):b(z,y,2,t)<bg

In appendix 3.8.3 we outline the definition of the isopycnal streamfunction via the conti-

nuity equation in isopycnal coordinates. For the time-mean of v; it holds
east top
Pr(y / / vdzdx:—/ / vdrdz. (3.6)
est J z:b(x,y,z,t)<bg bottom J x:b(z,y,z,t)<ba
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Figure 3.2: The isopycnal streamfunction (¢7) in (top) isopycnal coordinates and (bottom)
transformed to depth coordinates via the mean height of isopycnals (Nurser and
Lee, 2004a) for the flat (a,c) and the hill (b,c) case. The contour interval is
0.5 Sv and zero lines are thick.

In contrast to A of Eq. (3.4), the integration condition of 1; shows zonal and temporal
dependencies and hence the calculation of ¢); cannot be reduced to an integral of [v]. The
calculation of ¢; includes deviations from the zonal and temporal means, which we discuss
in detail in section 3.5.1. As outlined by McDougall and McIntosh (2001) and Nurser and
Lee (2004a), 15 is a streamfunction and advects the isopycnally averaged buoyancy when
transformed to depth coordinates via the mean height of isopycnals (see the discussion of

Fig. 3.3 below in this section).
Figure 3.2 shows 1) for both the flat case and the hill case in both isopycnal coordinates

and depth coordinates. Similar to the buoyancy distributions, the circulation patterns

implied by 9 are qualitatively identical for the flat case and the hill case: Two circulation
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3.5 Isopycnal streamfunctions

cells with opposite signs appear. In the positive cell, watermasses move adiabatically and
at fairly constant mid-depth from the northern end of the domain to the south. After en-
tering the channel at y = 1260km, this model NADW? moves nearly adiabatically further
south and upward, but is slightly cooled during its ascent. At around 200m depth these wa-
termasses turn northward and remain between 100m and 200m depth (below the negative
cell) in the channel region, while in the Atlantic part the surface is reached. The north-
ward flowing surface layer watermasses are strongly warmed until y = 2000km is reached.
Further north, the surface watermass is strongly cooled and sinks down to mid-depth, that
is, transforms to model NADW again and closes the loop. While the positive cell connects
the Atlantic and SO parts, the negative cell is mainly restricted to the SO part: At the
southern boundary the densest watermass of the whole domain (model AABW) sinks and
moves northward near the bottom, and then, under moderate interior warming, turns back
to the surface layer. After entering the surface layer this watermass flows northward un-
der strong warming until it upwells (before it enters the Atlantic part), and then moves
southward at the surface under strong cooling towards the southern boundary and the
highest density values are reached again. Embedded into this surface flow are smaller-scale
recirculation cells. While in the flat case the positive cell is slightly stronger (in transport)
and reaches deeper and further south, in the hill case, the circulation of the negative cell
is amplified in the surface layer. Altogether, watermass transformations primarily take
place in the surface layer, except for some moderate diapycnal flux in the upward flow
around y = 900km. Moreover, in both cases the surface waters of the SO part are flowing
southward.

Similar isopycnal meridional streamfunctions as in Fig. 3.2 have been diagnosed in
several realistic model studies (Hallberg and Gnanadesikan, 2006; Lee et al., 2007; Treguier
et al., 2007). However, an entirely southward flow in the SO conflicts with northward wind-
driven Ekman transport. Treguier et al. (2007) conclude that this southward surface flow is
largely a contribution due to the permanent meanders (“standing eddies”) of the time-mean
flow. Therefore, they suggest that it is essential to turn to a framework in which standing
eddies vanish or are reduced, in order to understand the MOC in the SO and its relationship
to surface forcing. In section 3.5.1 we consider the contribution of standing eddies to the
streamfunctions in Fig. 3.2, while in section 3.5.2 we discuss different possibilities of
minimising the impact of standing eddies on the isopycnal meridional streamfunction ;.

11, remapped to Eulerian space, advects the isopycnally averaged buoyancy. In case of

3 In this study we use the following standard abbreviations for oceanic watermasses: North Atlantic Deep
Water (NADW) and Antarctic Bottom Water (AABW).
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Figure 3.3: The difference (multiplied by 10%) between the time-mean of the isopycnally

averaged buoyancy and [b] (shown in Fig. 3.1) for the flat (a) and the hill (b)
case. The contour interval is 0.2m/s? and zero lines are thick.

isopycnal averaging at constant latitude, the zonal-mean (“isopycnally” averaged) isopy-
cnals are defined via the mean heights of the isopycnals at constant latitude (McDougall
and McIntosh, 2001; Nurser and Lee, 2004a). The mean surface density becomes the light-
est water ever found at a given latitude, which may differ substantially from the Eulerian
mean surface density. Figure 3.3 shows the difference between the time-mean of the isopy-
cnally averaged buoyancy (not shown) and the Eulerian zonal and time-mean buoyancy
distribution (shown in Fig. 3.1) for both the flat case and the hill case. In both cases
differences primarily occur in the diabatic surface layer and, as expected, surface waters
are more buoyant in case of isopycnal averaging than for Eulerian averaging. Notice that
the differences are about one order of magnitude smaller than the buoyancy fields. Hence,
the isopycnally averaged buoyancy distributions (not shown) are very similar to the Eule-
rian mean buoyancy distributions (shown and described in section 3.4), except that near
the surface isopycnals are less steep (in accordance with the results of Nurser and Lee
(2004a)). In the hill case differences are quantitatively more pronounced than in the flat
case. However, as for the buoyancy distributions, the differences are qualitatively similar

for both cases.

3.5.1 Transient and standing eddies

For each quantity ¢, we define its temporal deviation as ¢° = ¢ — g (including all time

dependency of ¢) and its zonal deviation as ¢+ = ¢ — [¢] (including all zonal dependency
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3.5 Isopycnal streamfunctions

of q). The zonal and temporal deviation, ¢ = ¢ — [q], can then be expressed in two ways®:
On the one hand, we can separate the temporal deviation ¢° such that ¢ = g + ¢°, on the
other hand, we can separate the zonal deviation ¢ such that ¢ = [¢°] + ¢". Obviously,
in each case the first term belongs to a mean part, namely either to the time-mean part
G =[q] +q", or to the zonal-mean part [q] = [q] + [¢°] of the quantity q.

We focus on the first decomposition®, where the temporal deviation ¢° is the so-called
transient eddy term, and the temporal mean of the zonal deviation, g, is the so-called
standing eddy term. The latter emerges from persistent zonal inhomogeneities and, as
mentioned, belongs dynamically to the time-mean circulation g.

Using the decomposed fields of buoyancy b = [b] + b+ + b° and meridional velocity
v = [0] +vF +v°, the time-mean isopycnal streamfunction 1;(y, b) (see Eq. (3.6)) may also
be decomposed into a time- and zonal-mean part (A;), a standing eddy part (¢%) and a
transient eddy part (7,[3}) The time- and zonal-mean part A; of the isopycnal streamfunc-

tion ¢y is related to the time- and zonal-mean parts of b and v,
A=- / L[] d= . (3.7)
ZI[E](y,Z)Sba

A; may be considered as the Eulerian streamfunction in isopycnal coordinates: For our
model results, A;, transformed to depth coordinates using the mean heights of [b] (Nurser
and Lee, 2004a), is identical to A given by Eq. (3.4) (Fig. 3.1 a,b)). This is due to the
vertically monotonic buoyancy distribution [b] (see Fig. 3.1 c,d)).

Following the definition of a standing eddy term, the standing eddy part of v is given
by the difference between A; (constituted by the time- and zonal-mean parts of b and v)

and the isopycnal streamfunction which is given by the time-mean parts of b and v,

1/375_// Tdrdz—A; . (3.8)
(,2):b(2,y,2) <ba

That is, both A; and 1/3}* are solely related to time-mean quantities. Finally, the transient

eddy part of ¢; is the residuum,

@;Eiﬁ// ) Tdr dz =, — A — 5 (3.9)
(z,2):b(z,y,2)<bq

4Notice that [g] = [¢] implies [¢°] = [¢]° and g+ = ¢+.
5 For our model experiments we found that the second decomposition is meaningless. More precisely, we
found that the temporal correlations of the zonally averaged temporal deviations, [v°][b°], vanish.

o
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Figure 3.4: Top: The standing eddy streamfunction (¢)¥) for the flat (a) and the hill (b)
case. Bottom: The transient eddy streamfunction () for the flat (c) and the
hill (d) case. The contour interval is 0.5 Sv and zero lines are thick. They
were transformed to depth coordinates via the mean height of the respective
isopycnals (Nurser and Lee, 2004a).

and hence zﬁ}* is implicitly related to the transient eddy parts of b and v. Altogether, we
obtain the following decomposition of v;(y, b),

Yr = Ar + 9%+ 95 (3.10)

Figure 3.4 shows the standing eddy streamfunction 1&}‘ and the transient eddy stream-
functhnnfﬁf for both the flat case and the hill case. In the flat case, the standing eddy
streamfunction 1@? vanishes in the channel part of the model. This may be understood as

follows: In the flat case, isolines at fixed depth of time-mean buoyancy b essentially coincide
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3.5 Isopycnal streamfunctions

with latitude circles in the channel part (as described in detail in section 3.5.2). Therefore,
the corresponding standing eddy part of buoyancy vanishes, b+ = 0. Consequently, the
integration conditions in Eq. (3.7) and Eq. (3.8) coincide and hence the standing eddy
streamfunction 1&} vanishes, which is independent of the integrands in Eq. (3.7) and Eq.
(3.8). Notice that time-mean streamlines in the flat case also essentially coincide with
latitude circles at each depth, except in the boundary layers, where significant meridional

components (Ekman transport) are present (as seen in A in Fig. 3.1 a)).

Turning back to Fig. 3.4, we find that in the Atlantic part the standing eddy stream-
functions 1&7 of the flat case and the hill case are nearly identical: In the convective region
at the northern boundary, a negative circulation cell appears, which reduces the positive
circulation cell of A (Fig. 3.1) in the overall MOC ¢; (Fig. 3.2). Outside the convective
region, the standing eddy circulation @@f is small in the Atlantic part. In contrast to the
flat case, the hill case shows also strong standing eddy circulations in the channel part:
At mid-depth and in particular in the surface layer, negative circulation cells counteract
the local transport maxima and the Ekman transport of A (Fig. 3.1), while with deeper
depths, 1&? becomes smaller (just like A). As expected, the surface poleward transport in
¢y (Fig. 3.2 d)) of the hill case is due to the standing eddy streamfunction ¢, while the
transient eddy streamfunction 1&} of the hill case is small in the surface layer. However,
besides the surface layer, 7,2}‘ is of the same magnitude as @2} in our idealised model (in
contrast to the suggestions of Karoly et al. (1997) and in accordance with Lee and Coward
(2003)). Just like /% and A, the transient eddy streamfunction ¢ of the hill case contains
two local transport maxima at mid-depth, but in contrast to 1/3} and A, the maximal values

reach deeper under the top of topography (down to 1400m depth).

In the Atlantic part, 1/;}‘ of the flat case and the hill case are also nearly identical: A
negative circulation cell appears in the convective region at the northern boundary of the
domain (similar to Q@}‘ but smaller in magnitude) together with a small positive recirculation
cell in the surface layer. However, in the channel part the transient eddy streamfunctions
1;} of the flat case and the hill case show substantial differences: In the flat case, 1;?
contains only one local maximum (counteracting the corresponding local maximum of A
in Fig. 3.1 a)) outside the surface layer, which occurs at deeper depths (around —1600m)
and is stronger in magnitude. Moreover, a second strong negative circulation cell appears
in the surface layer that accounts for the poleward transport in the overall MOC #; of the
flat case (Fig. 3.2 c)).

We conclude, that in the hill case the southward surface transport in the overall MOC 1),
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3 Standing eddies in the meridional overturning circulation

(Fig. 3.2 d)) is due to the standing eddy part 1&}* We therefore consider zonal integration
paths that lead to a reduction (or at best a vanishing) of the standing eddy part @@} in the

next section 3.5.2.

3.5.2 MOCs with reduced standing eddy circulation

A zonal-mean meridional transport function should possess the properties of a streamfunc-
tion: The respective derivatives have to give the zonal-mean meridional and vertical (or
diapycnal) flow. That is, mass balance has to be guaranteed and therefore zonal integration
paths and the cross-path transport velocity have to be determined in accordance with the
continuity equation. In arbitrary coordinates (m,n, 2) (see appendix 3.8.1) the continuity
equation reads (Aris, 1989)

%{am(\/g um) +8n<\/§ v") +ag(\/§ wf)} =0, (3.11)

where g = det(g;;) and u™, v"™, w* are the contravariant components of the velocity vector v

V-v

in the coordinate system (m,n, Z) (see appendix 3.8.1). Notice that the form of Eq. (3.11)
is completely general such that we could equally well consider a framework of isopycnal
coordinates (1m,n,b) (see appendix 3.8.3). The continuity equation (3.11) implies that

integration paths and cross-path transport velocity have to satisfy the following conditions:

(i) Above topography the zonal integration paths (coordinate lines of m) have to be

closed®.

(ii) At and below topographic heights the sum of boundary terms, resulting from zonal

integration and interchanging integration and differentiation, has to vanish.

(iii) The cross-path transport velocity v, has to be defined via the contravariant meridional

velocity v™ of the coordinate system (up to a metrical factor).

While conditions (i) and (iii) have to be discussed in conjunction with the specific zonal
integration paths, condition (ii) may be considered subject to the boundary conditions, as
outlined in appendix 3.8.2. Cartesian coordinates represent the only familiar coordinate

system, where condition (ii) is always exactly satisfied by solely imposing the boundary

6 In this study closed curves are circumpolar horizontal paths which take the same latitude at the western
and eastern boundaries of the channel.
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3.5 Isopycnal streamfunctions

condition of no-normal-flow at topographic barriers. Otherwise, further boundary condi-
tions have to be included, e.g. the no-slip boundary condition (which has been implemented

in our experiments).

Zonal integration along time-mean horizontal streamlines

Time-mean horizontal streamlines are defined as the integral curves of the horizontal time-
mean velocity vector field W = (@, 7,0): At each point of a streamline the correspond-
ing velocity vector U is tangential to the streamline. Adopting the horizontal time-mean
streamlines as the new zonal coordinate lines, we obtain for the unit tangential vector
e, = u/[d] and consequently for the unit normal vector e,, = (—7,w,0)/[ql.

As stated in condition (iii), the cross-path transport velocity (which constitutes the in-
tegrand of 1@*) is given by the contravariant meridional velocity v", v"\/gnn = v - €, +
w(9,n/|Vin|) (see appendix 3.8.1). The first term represents the projection of the overall
velocity on the horizontal normal vector of the horizontal integration path, while the sec-
ond term represents an additional non-orthogonality term. In case of time-mean horizontal
streamlines, the first term is given by v - e, = (v°u — u°v)/[0], which is a pure transient
eddy velocity (the time-mean vanishes). The time-mean of the non-orthogonality term,
w(0,n/|Vynl), does not vanish in general, and hence has to be included in the calculation
of both the standing eddy streamfunction 1&* and the Eulerian streamfunction A;. Only if
the time-mean horizontal streamlines are depth-independent, the curvilinear coordinates
system is orthogonal and the non-orthogonality term can be neglected. Under such con-
ditions we obtain the desired result: The time-mean of the cross-path transport velocity
vanishes, and consequently, both the standing eddy streamfunction 1&? and the Eulerian
streamfunction A; vanish, ¢ = 0 and A; = 0 (see Eq. (3.7) and (3.8)). Hence, the merid-
ional streamfunction v; is given by the transient eddy streamfunction 1/;}* only, ¥y = 1/;}
Notice that the other basic physical quantities (u, b, ...) in general do not have a vanishing

time-mean or standing eddy part.

Time-mean horizontal streamlines in the flat case and the hill case Figure 3.5 shows
the time-mean horizontal streamlines, determined by a direct numerical integration of the
horizontal time-mean velocity vector field @ = (@, v, 0), in the SO region at selected depths
for both the flat case and the hill case. In the flat case, streamlines in the SO region
essentially coincide with latitude circles and are directed eastward at almost each depth

(e.g. Fig. 3.5 b)). Only near the surface (down to 50m depth) streamlines have a significant
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Figure 3.5: Time-mean horizontal streamlines in the SO region for (top) the flat case at
z = —2bm (a), z = —75m (b), 2 = —1875m (c) and (bottom) the hill case at
z=—=2bm (d), z = =7hm (e), z = —825bm (f). In each case streamlines with a
starting point at x = 0 and y = 290km, 610km, 970km are black and thick.

northward component (Fig. 3.5 a)) and near the bottom (in the deepest 50m) streamlines
have a corresponding southward component (Fig. 3.5 ¢)). Hence, time-mean horizontal
streamlines are not closed in the Ekman layers. Outside the surface and bottom boundary
layers, the eastward flow in the entire SO region is vertically homogeneous’. Moreover, in
the SO region, horizontal isolines of the time-mean geostrophic streamfunction p/fy (not
shown) coincide with latitude circles at each depth and hence essentially coincide with
time-mean horizontal streamlines outside the boundary layers. In the boundary layers, the
geostrophic streamfunction p/fy is unable to capture the meridional components of the
circulation.

In the hill case, the time-mean streamline pattern is more complicated. In the SO
region, time-mean streamlines are highly undulated and at larger depth dominantly cy-
clonic recirculation cells appear®. Hence, a nearly vertically homogeneous structure of

the flow field is found only in a small region. More precisely, the sector roughly given by

7 Notice that the time-mean Eulerian streamfunction A (Fig. 3.1 a)) gives a concise picture of the MOC
given by the time-mean velocity field in the SO region (in the flat case).

8 In Fig. 3.5 mainly circumpolar time-mean horizontal streamlines are shown. Recirculation cells are
present in the broad plain white regions of Fig. 3.5 f) and are visualised in Fig. 3.6 b, ¢).
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800km < y < 1100km and 0 < x < 1600km represents the region of undulated streamlines,
which change the least with depth. For x > 1600km, the topography overflowing current
is less undulated, but turns from a north-eastward flow in the upper 700m (Fig. 3.5 d, e)
and Fig. 3.6 a)) into a south-eastward flow for z < —1000m (Fig. 3.6 ¢)). The opposite be-
haviour is found eastward of the top of topography (0 < x < 850km, 0 < y < 700km): The
topography overflowing current turns from a south-eastward flow into a north-eastward
flow at larger depth. In between (850km < z < 1690km), streamlines are mainly zonal
in the upper 500m (Fig. 3.5 d, e) and Fig. 3.6 a)). However, at larger depth a cyclonic
recirculation pattern emerges at the southern boundary (centerd around x = 1000km),
which extends to y = 500km at 900m depth and includes smaller recirculation cells at
larger depth (Fig. 3.6 b, ¢)).

Notice that also in the hill case time-mean horizontal streamlines are not closed in the
surface layer (Fig. 3.5 d)), and that the meridional shift is larger in the hill case than in
the flat case. Nevertheless, below the surface layer time-mean horizontal streamlines are
closed (Fig. 3.5 e, f)). That is, below the surface layer time-mean horizontal streamlines
may be represented by horizontal contours of a scalar field, e.g. the time-mean geostrophic
streamfunction p/ fj.

Figure 3.6 shows the time-mean geostrophic streamfunction p/ f, at selected depths for
the hill case. Horizontal isolines of p/fy essentially coincide with time-mean horizontal
streamlines, except in the surface Ekman layer. In contrast to the flat case, a bottom
boundary layer is absent in the hill case (see Fig. 3.1 b)), but the deep return flow (bal-
ancing the topographically and wind-induced Ekman surface transport) is geostrophically
balanced by east-west pressure differences. We note that the topographically induced
geostrophic meridional excursions (Fig. 3.6 a)) and the ageostrophic surface meridional
shift (Fig. 3.5 d)) are of the same order.

We conclude: In our model results, time-mean horizontal streamlines may be well ap-
proximated by horizontal contours of 7/ fy outside the boundary layers, while in the Ekman
layers significant deviations occur. In particular, time-mean horizontal streamlines are not
closed in the Ekman layers. Moreover, in the hill case the time-mean flow field of the ocean

interior (excluding the boundary layers) shows a significant depth-dependence.

Conclusions from numerical model results The time-mean horizontal streamlines in
our two model experiments suggests that zonal integration along those lines may only lead

to a reduction of the standing eddy part 1&}, but not to an exact vanishing: On the one
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Figure 3.6: Top: Time-mean geostrophic streamfunction p/fy [10° m?/s] of the hill case
at z = —25m with a contour interval of 5 x 10* m?/s (a), 2 = —975m with a
contour interval of 1 x 10*> m?/s (b) and z = —1525m with a contour interval
of 5 x 10?2 m?/s (c). Bottom: Time-mean buoyancy b [1072 m/s?] of the hill
case at z = —25m with a contour interval of 1 x 1072 m/s? (d), z = —975m
with a contour interval of 2 x 1072 m/s? (e) and z = —1525m with a contour
interval of 2 x 10! m/s? (f).

hand, time-mean horizontal streamlines are not closed at each depth, that is, condition
(i) is in general not satisfied, since in the surface Ekman layer the flow is horizontally
divergent. In order to satisfy condition (i), streamlines have to be approximated by e.g.
the geostrophic streamfunction p/fy. However, the Ekman component is missed in that
case and therefore both the standing eddy streamfunction Qﬁ* and A; generally will not
vanish. On the other hand, time-mean horizontal (geostrophic) streamlines significantly
change with depth. Therefore, the curvilinear coordinate system induced by this set of
horizontal paths has to be considered in general non-orthogonal. Consequently, the non-
orthogonality term w(9,n/|Vin|) can not be considered to be small and hence, has to
be included. The time-mean of the cross-path transport velocity for zonal integration
along horizontal time-mean geostrophic streamlines (that is, n ~ p/fy), v ~ wWd.p, in
general does not vanish, and therefore, one has to expect that both the standing eddy

streamfunction ¢* and A; generally do not vanish.
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Finally, we note that the flat case represents a special case in this respect: In the flat
case isolines of p/ fo coincide with both, latitude circles and isolines of time-mean buoyancy
(not shown). It is due to the latter coincidence, as we discuss in the next section, that
the standing eddy streamfunction ¢* has to vanish in this case (see Fig. 3.4 a)), but A;
apparently does not vanish (see Fig. 3.1 a)).

Zonal integration along horizontal isolines of time-mean buoyancy b

Using horizontal isolines of b as the zonal coordinate lines, condition (i) is satisfied by
definition. The unit normal vector becomes e, = (V;b,0)/|V,b| and therefore, the unit
tangential vector reads e,, = (9,b, —0,b,0)/|V,b|. Consequently, the time-mean of the
first term of the cross-path transport velocity v”, i.e. the instantaneous horizontal velocity
across horizontal time-mean buoyancy contours v - e, = u - (V;b,0)/|V,b|, generally does
not vanish. Hence, even in case horizontal b contours are depth-independent, such that
the induced curvilinear coordinate system is orthogonal, the cross-path transport velocity
v™ generally has both, a non-vanishing time- and zonal-mean component, [v"], and a non-
vanishing standing eddy component, v7 . Therefore, the Eulerian streamfunction A; (see
Eq. (3.7)) generally does not vanish too.

However, the standing eddy component of the buoyancy field b vanishes, i.e. b =0,
Therefore, the time-mean part of ¥; (given by Q/AJ* +A;) and the time- and zonal-mean part
of 97 (given by A;) are identical (see Eq. (3.7) and (3.8)) and hence, the standing eddy
streamfunction 1/3}‘ vanishes. This result is solely constituted by the zonal integration condi-
tions. Therefore, it is independent of the determination of the cross-path transport velocity.
In other words, in case zonal integration paths are determined by horizontal contours of b,
a vanishing standing eddy streamfunction is not affected by the non-orthogonality of the
curvilinear coordinate system, since it relies only on the integration conditions, but not on
the integrand of 1/}; (that is, cross-path transport velocity).

We conclude: Horizontal isolines of b may be used without approximation (condition (i) is
always satisfied) as zonal integration paths for the construction of a zonal-mean meridional
streamfunction, and moreover, the corresponding standing eddy streamfunction 1&}‘ exactly

vanishes, even in the general non-orthogonal case.

Horizontal isolines of time-mean buoyancy in the flat case and the hill case In the
flat case, horizontal isolines of b (not shown) coincide with latitude circles and hence also

with geostrophic streamlines at each depth in the SO region. In contrast, in the hill case
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both coincidences are lost. Figure 3.6 also shows b at selected depths for the hill case. In
the SO region, horizontal isolines of b are roughly analogue to isolines of 7/ fy in the upper
600m (see Fig. 3.6 a,d)). However, going to deeper depths the structure of contours of b
changes much less than the structure of isolines of p/ f (or horizontal streamlines) (see Fig.
3.6). In particular, isolines of b remain nearly void of recirculation cells in the SO region.
The meandering of contours increases with depth, but much more isolines of b (than of
P/ fo) extend over the whole zonal extension at deeper depths. In other words, at depth
the deviation from latitude circles is much smaller for isolines of b than for isolines of 7/ f;

(or horizontal streamlines).

MOCs in case of orthogonal approximations

The construction of a zonal-mean meridional streamfunction with an exactly vanishing
standing eddy part zﬁ? should be performed by zonal integration along depth-dependent
horizontal isolines of time-mean buoyancy. However, in this case we would have to deal
with non-orthogonal coordinates, with considerable technical complications. The following
procedure to minimise the standing eddy part qﬁ} may represent a practical compromise:
The contours of b (or p/fy) at a certain depth (“contour-depth” in the following) are used
for zonal integration at all depths. Thereby, the applied curvilinear coordinate system is

orthogonal. The continuity equation Eq. (3.11) becomes

am V Gnn (V . em) + 871 V Imm (V . en) + 8z

vV ImmGnn w] =0 y (312)

such that the cross-path transport velocity reduces to the projection of the overall velocity
on the horizontal normal vector of the horizontal integration path, v -e,. However, in case
the horizontal contours of time-mean buoyancy b (or D/ fo) significantly change with depth,
the standing eddy streamfunction 7,@}‘ now exactly vanishes at the contour-depth only, where
the zonal coordinate lines are identical to the horizontal contours of b, such that b =0
holds (or zonal coordinate lines may be identical to horizontal time-mean streamlines, such
that v-€, = 0 holds). At other depths, the standing eddy streamfunction 12)7 does not
vanish in general. The optimal contour-depth is then defined by the minimal®, but in
general not completely vanishing, standing eddy part zﬁ}‘

Figure 3.7 shows the standing eddy streamfunctions 1&}‘ of the hill case, where zonal

9 1&} is minimal in comparison with the standing eddy parts related to all other contour-depths.
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Figure 3.7: Standing eddy streamfunctions ; for zonal integration along time-mean

geostrophic streamlines (a-c) and isolines of time-mean buoyancy b (d-f). Eu-
lerian streamfunctions A; for zonal integration along time-mean geostrophic
streamlines (g-i) and isolines of time-mean buoyancy b (j-1). From left to right
the contour-depths are given by z = —25m, z = —475m and z = —925m.
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3 Standing eddies in the meridional overturning circulation

integration is performed along horizontal isolines of either p/f, or b at three selected
contour-depths. In case p/fy near the surface is used, we find three regions of significant
standing eddy circulation (Fig. 3.7 a)): Two circulation patterns are located around the top
of topography, namely a positive pattern located around y = 800km and a negative pattern
of broader vertical extension and slightly larger magnitude located around y = 400km.
However, the largest magnitudes are given by the negative third pattern situated in the
surface layer. This pattern is due to the absence of the significant ageostrophic flow field
component in the geostrophic surface streamlines. In contrast, in case the contour-depth
for p/ fo lies below the surface layer, the standing eddy circulation @/A)} vanishes at the
corresponding contour-depth (Fig. 3.7 b,c)). Moreover, with deeper contour-depths the
negative circulation pattern around the top of topography diminishes and finally vanishes
for contour-depths below z = —325m (Fig. 3.7 b)). However, simultaneously the positive
circulation pattern extends with deeper contour-depths (by nearly constant magnitude)
and for contour-depths below z = —700m a second corresponding positive circulation
pattern at mid-depth appears (Fig. 3.7 ¢)). In addition and most important, with deeper
contours-depths the negative circulation pattern in the surface layer extends vertically and
significantly increases in magnitude with the maximal values near the surface (Fig. 3.7 a-
c)). Consequently, using p/ fo-isolines for zonal integration, the surface layer represents the
contour-depths with minimal overall and surface layer standing eddy circulation @/AJ} in our
model experiment. However, a significant standing eddy circulation 1[1} in the surface layer

appears unavoidable for p/ fy due to the missing ageostrophic surface layer component.

In contrast, using b-isolines for zonal integration, the standing eddy circulation Qﬂ? van-
ishes at each contour-depth (including the surface layer), since no approximation is involved
(Fig. 3.7 d-f)). However, for a contour-depth of z = —25m a strong, broad and deep reach-
ing standing eddy circulation @/AJ? appears below the contour-depth. Applying slightly deeper
contour-depths, this large circulation pattern decomposes into an ensemble of circulation
patterns similar to those obtained by zonal integration along p/ fo-isolines with a contour-
depth of z = —25m: On the one hand, a positive pattern is located around y = 900km
and a negative pattern of broader vertical extension is located around y = 400km, which
both are situated around the top of topography. On the other hand, a negative and small
third pattern is situated in the surface layer. This similarity in the standing eddy circu-
lations reflects the similarity between B/ fo- and b-isolines in the upper layers (below the
uppermost layer). However, the depth-dependencies of these two types of zonal paths differ

more and more with deeper depths and hence the dependency of the contour-depth of the
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standing eddy circulations does too. Using b-isolines for zonal integration, both circula-
tion patterns situated around the top of topography diminish with deeper contour-depths
and eventually vanish (the positive one at a contour-depth of z = —575m and the nega-
tive one at z = —925m). Moreover, the negative circulation pattern in the surface layer
slightly increases in magnitude and extension down to a contour-depth of z = —400m,
but then decreases again such that it nearly vanishes for a contour-depth of z = —925m.
In contrast to zonal integration along p/ fo-isolines and simultaneously to the diminishing
standing eddy circulation patterns, a positive circulation pattern emerges in the surface
layer around y = 350km for a contour-depth of z = —325m and increases significantly in
magnitude for deeper contour-depths (Fig. 3.7 e,f)). Consequently, the determination of
the contour-depth which leads to the minimal overall standing eddy circulation 1/3} is not
as straightforward as for zonal integration along p/ fo-isolines. We choose the criterion,
that the standing eddy circulation @/A)} with the smallest maximal absolute value represents
the minimal overall standing eddy circulation zﬂ}‘ In our experiments, the corresponding

contour-depth lies around z = —500m.

Figure 3.7 also shows the corresponding Eulerian streamfunctions A; of the hill case,
where zonal integration is performed along horizontal isolines of either p/fy or b at three
selected contour-depths (so that A; -+ 1&? represents the overall time-mean circulation).
In both cases, the structure of two local maxima (see Fig. 3.1 b)) is lost, but now only
one local maximum is situated in the center of the circulation cell, i.e. around the top of
topography and around y = —700km (except in Fig. 3.7 i), where the maximum is close to
the surface layer). In addition, the magnitude of the maximal values is generally reduced.
Remember that if time-mean horizontal streamlines coincided with time-mean geostrophic
streamlines and were depth-independent, we would not only expect 1/3}‘ =0, but also A; =0
(for zonal integration along time-mean geostrophic streamlines). Accordingly, for p/ fo-
isolines the overall magnitude of A; is always smaller than A; using b-isolines at the same
depth. However, for zonal integration along p/ fo-isolines the dependency of the contour-
depth of A; and the standing eddy circulation g@}* counteract each other: While the overall
standing eddy circulation 1[)7 intensifies, the overall Eulerian circulation A; diminishes with
deeper contour-depths. A different behaviour is present using b-isolines: Here the minimal
overall Eulerian circulation A; and the minimal overall standing eddy circulation 1/;} are
found for the same contour-depth, i.e. in our model experiments around the mid-depth
of z = —500m. For both shallower contour-depths (more pronounced negative values in

the standing eddy circulation zﬂ}‘) and deeper contour-depths (more pronounced positive
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Figure 3.8: Isopycnal streamfunctions v, for zonal integration along time-mean geostrophic
streamlines (a-c) and isolines of time-mean buoyancy b (d-f). Transient eddy
streamfunctions @/Z} for zonal integration along time-mean geostrophic stream-
lines (g-i) and isolines of time-mean buoyancy b (j-1). From left to right the
contour-depths are given by z = —2bm, z = —475m and z = —925m.

values in the standing eddy circulation 1&?) A; increases.
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3.5 Isopycnal streamfunctions

Finally, Figure 3.8 shows the corresponding total isopycnal streamfunctions ¢; and tran-
sient eddy streamfunctions 1/;7 of the hill case. In the ocean interior, both the positive and
the negative overturning cells are roughly equivalent in all cases, while in the surface
layer qualitative differences occur for different contour-depths (Fig. 3.8 a-f)). As sug-
gested by several studies, for zonal integration along surface p/ fo-isolines (Fig. 3.8 a)), the
shallower positive MOC is in accordance with the surface wind forcing conditions. The
negative overturning cell is more restricted to the south in the surface layer and its overall
magnitude is reduced, while the overall magnitude of the positive cell is essentially un-
changed (compare with Fig. 3.2 d)). However, for deeper contour-depths of the time-mean
geostrophic streamlines both the magnitude and the meridional extension in the surface
layer of the negative overturning cell increase, such that the northward surface return flow
of the positive overturning cell (whose overall magnitude remains unaltered) is more and
more covered by the negative cell (Fig. 3.8 b,c)). This tendency is in correspondence with
the dependency of the contour-depth of the respective standing eddy streamfunctions f@}
(Fig. 3.7 a-c)), where the negative surface circulation significantly increases with deeper
contour-depths. In particular, the magnitude of the corresponding negative transient eddy
circulation 1;}* in the surface layer decreases with deeper contour-depths (Fig. 3.7 g-i)),
such that for a contour-depth of z = —925m the negative surface circulation in the total
MOC #; (Fig. 3.8 c)) is entirely due to the negative surface standing eddy circulation @/AJ}

(similar to the case of zonal integration along latitude circles, Fig. 3.4 b,d)).

Using horizontal b-isolines as zonal integration paths, the overall magnitude of the posi-
tive overturning cell of the total isopycnal streamfunctions ¢; also appears to be insensitive
to changes in the contour-depth. However, the dependency of the contour-depth of the
magnitude and the meridional extension in the surface layer of the negative overturning
cell is opposite to the previous case: With deeper contour-depths the magnitude and the
meridional extension in the surface layer of the negative overturning cell reduce (Fig. 3.8
d-f)). In case of the deep contour-depth z = —925m, the positive overturning cell even
overflows the negative overturning cell in the entire SO (Fig. 3.8 f)). Obviously, since
the negative transient eddy circulation @ZJ} in the surface layer only slightly decreases with
deeper contour-depths (Fig. 3.7 j-1)), this behaviour is related to the emergence of a posi-
tive circulation pattern in the surface layer of the standing eddy streamfunction ¢} (Fig.
3.7 f)). Nevertheless, the contour-depth which leads to the most appropriate surface circu-
lation pattern (regarding the wind forcing) is found around the mid-depth of z = —500m

(Fig. 3.8 ¢)). Hence, we obtain the important result that in both cases (zonal integration
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Figure 3.9: The difference (multiplied by 10%) between the time-mean of the isopycnally and
along time-mean contours averaged buoyancy distribution and the isopycnally
and along latitude circles averaged buoyancy distribution. Contours are either
time-mean geostrophic streamlines (a-c) or isolines of time-mean buoyancy (d-
f). From left to right the contour-depths are given by z = —25m, z = —475m
and z = —925m. The contour interval (of the plots) is 0.2m/s* and zero lines
are thick.

along time-mean geostrophic streamlines or isolines of buoyancy) the most appropriate
surface circulation pattern and the minimal standing eddy circulation are related to the

same contour-depth.

Related zonal-mean buoyancy distributions

Each of the above isopycnal streamfunctions (Fig. 3.8 a-f)) advects a different isopycnally
averaged buoyancy (McDougall and MclIntosh, 2001; Nurser and Lee, 2004a), correspond-
ing to the zonal integration path. Per definition, each curvilinear zonal integration path
with an equivalent coordinate y, although being longer, encompasses the same amount of
area to the south as the latitude circle related to the latitude y. However, the zonal-mean
buoyancy distribution is sensitive to the zonal integration paths. Similar to Fig. 3.3 b), the
differences (not shown) between the isopycnally and along time-mean contours averaged

buoyancy distributions (not shown) and the Eulerian mean buoyancy distribution averaged
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along latitude circles (shown in Fig. 3.1 d)) are maximal and positive in the surface layer in
each case. Figure 3.9 shows the differences between the isopycnally and along time-mean
contours averaged buoyancy distributions and the isopycnally and along latitude circles
averaged buoyancy distribution (not shown), which partly show significant values below
the surface layer at mid-depth. The differences of Fig. 3.9 are of the same order of mag-
nitude as those of Fig. 3.3 b). In other words, the effect of changing the zonal integration
paths is of the same order as changing between Eulerian and isopycnal averaging. Fig.
3.9 and Fig. 3.6 suggest the following relation between zonal integration paths and the
corresponding isopycnally averaged buoyancy distributions in our experiments: As long as
the zonal integration paths roughly follow b-isolines, being more northward above topogra-
phy than above flat bottom (see Fig. 3.6 a,d-f)), the corresponding zonal-mean buoyancy
distributions are colder in the surface layer than the zonal-mean buoyancy distribution re-
sulting from zonal integration along latitude circles (Fig. 3.9 a,b,d-f)). Using p/ fo-isolines
(Fig. 3.9 a-c)), the surface layer values of the zonal-mean buoyancy distributions increase
with deeper contour-depths, even exceeding, for the deepest set of contours, the values
of the case of zonal integration along latitude circles. This is due to the development of
a broad recirculation pattern in the geostrophic streamlines with deeper depths (see Fig.
3.6 a~c)), which “pushes” the geostrophic streamlines above flat bottom to the north. At
larger depth, B/ fo-isolines are more northward above flat bottom than above topography,

in opposition to b-isolines.

3.6 Summary

The zonal-mean isopycnal meridional streamfunction ¢ (y, by, t) (Eq. (3.5)) is the south-
ward volume transport with buoyancy b smaller than a given value b, across a given latitude
y. In this case, the zonal integration is performed along latitude circles. Since the integra-
tion condition of ¢); shows zonal and temporal dependencies, its time-mean ; (Eq. (3.6))
includes deviations from the time- and zonal-means of both b and the meridional transport
velocity v. In order to distinguish the relative impacts of the means and deviations of b and
v, we decomposed the total isopycnal MOC ¥y into three parts: (i) The Eulerian MOC A;
(Eq. (3.7)) is defined by the time- and zonal-means of b and v and may be considered as the
classical Eulerian MOC (Eq. (3.4)) in isopycnal coordinates, if the time- and zonal-mean
buoyancy distribution [b] is vertically monotonic. (ii) The isopycnal standing eddy MOC
Y% (Eq. (3.8)) is defined by the difference between, on the one hand, the part of ¢; which
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3 Standing eddies in the meridional overturning circulation

is defined by the time-means of b and v and, on the other hand, the Eulerian MOC A;.
(#17) The transient eddy MOC % (Eq. (3.9)) of ; is given by the residuum.

We applied the decomposition of ¢ to the results of an eddy-permitting idealised numer-
ical SO model in a configuration with a simple hill-like topographic feature. Expectedly, ¥
shows a positive cell, which connects the SO and the Atlantic, and a negative cell related to
bottom water formation. However, 1; exhibits a southward surface flow in the entire SO,
which conflicts with the expectation of a northward wind-driven Ekman transport. The
decomposition of 1); reveals that the standing eddy MOC @/AJ} constitutes the southward

surface transport of ¢; in the SO.

Previous studies (e.g. Treguier et al. (2007)) suggest that a redefinition of the zonal
integration paths, such that the standing eddy MOC 7,@}‘ vanishes in the SO, may lead to a
more appropriate MOC ;. In the key chapter of this study (section 3.5.2), we considered
two types of zonal integration paths, which enable the reduction or even vanishing of
the standing eddy MOC 12)7 time-mean horizontal streamlines and horizontal isolines of

time-mean buoyancy b.

It turned out that time-mean horizontal streamlines represent the more limited and com-
plicated case. Exact time-mean horizontal streamlines may be used as zonal integration
paths in the construction of a zonal-mean meridional streamfunction only, in case they are
closed above topography (i.e. the horizontal velocity field is nondivergent), because other-
wise mass balance is not guaranteed. We showed that if time-mean horizontal streamlines
are both closed and depth-independent, the time-mean of the meridional cross-streamline
transport velocity will vanish. It follows that under such conditions both the standing
eddy MOC 12]7 and the Eulerian MOC A; vanish exactly. However, as demonstrated by
the model results of the hill case, time-mean horizontal streamlines generally are unclosed
in the surface layer (due to the wind-driven Ekman transport) and significantly change with
depth. Consequently, zonal integration along time-mean horizontal geostrophic streamlines
may only lead to a reduction, but not an exact vanishing of the standing eddy MOC 1[1}:
On the one hand, streamlines have to be approximated by the isolines of a scalar field, e.g.
the geostrophic streamfunction p/ fy, such that in regions of dominant ageostrophic trans-
ports a significant standing eddy MOC Q@}‘ may appear. On the other hand, the significant
depth-dependence of the (geostrophic) streamlines induces a non-orthogonality term with
non-vanishing time-mean in the meridional cross-streamline transport velocity, which may

lead to an additional significant contribution in the standing eddy MOC @/AJ}

In case horizontal isolines of time-mean buoyancy b are adopted as the zonal coordinate
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lines, the standing eddy component b vanishes and the circumstances are more promising
and simple. On the one hand, b-isolines are always closed above topography and hence
do not conflict with mass balance and may be used without approximation. On the other
hand, a vanishing standing eddy MOC 1/37 relies only on the integration conditions. It is
independent of the determination of the cross-path transport velocity and therefore always
exactly holds - even for a depth-dependent b, which induces a non-orthogonal curvilinear
coordinate system. However, the time-mean of the cross-path transport velocity and hence

the Eulerian MOC A; do not vanish in general.

In order to avoid the considerable technical complications implied by non-orthogonal
coordinates, we computed the total isopycnal MOC 1); by using either b-isolines or 7/ fo-
isolines of a fixed depth (“contour-depth”), such that the applied curvilinear coordinate
system is orthogonal. For b-isolines the standing eddy MOC 1% now exactly vanishes at
the corresponding contour-depth only. For the same result, p/ fo-isolines additionally have
to coincide with the exact horizontal time-mean streamlines at the contour-depth, which

excludes the surface Ekman layer.

By applying different contour-depths, we found that for p/ fy-isolines the minimal stand-
ing eddy MOC @ZA)} emerges for contour-depths near the surface, including a significant
negative standing eddy circulation in the surface layer due to the missed surface Ekman
transport. For deeper contour-depths, the standing eddy surface circulation increases in
both negative magnitude and vertical extension. For b-isolines, the minimal standing eddy
MOC 7,@; is found for contour-depths around z = —500m in our experiment and is of
slightly smaller magnitude than the minimal zﬂ}‘ resulting from zonal integration along
P/ fo-isolines. Using shallower (deeper) contour-depths leads to stronger negative (posi-
tive) standing eddy circulations for b-isolines. For both types of zonal integration paths,
the corresponding Eulerian MOCs A; are in general smaller than A; obtained by zonal
integration along latitude circles, with p/ fy-isolines giving the smallest A; for a certain
contour-depth. For p/ fo-isolines, A; decreases with deeper contour-depths (in opposition
to 1&7), while in case of b-isolines the minimal A; and the minimal 1@}‘ appear at the same

contour-depth.

The corresponding total MOCs 1); show significant differences in the surface layer. For
both types of zonal integration paths, the most appropriate surface layer circulation is
obtained by using the contour-depth of the minimal standing eddy circulation @@} The
dependency of contour-depths of the surface layer circulation in 1; is dominated by the

corresponding zﬂ}: For p/ fo-isolines, the negative surface circulation extends with deeper
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3 Standing eddies in the meridional overturning circulation

contour-depths, while for b-isolines the negative (positive) surface circulation extends with

shallower (deeper) contour-depths.

Finally, we considered the corresponding isopycnally averaged buoyancy distributions.

Changing from Eulerian to isopycnal averaging for zonal integration along latitude circles

primarily leads to a warmer surface layer. We found that the effect of changing from lati-

tude circles to curvilinear zonal integration paths is slightly smaller, but of the same order.

b-isolines generally lead to a cooling in the surface layer, while B/ fo-isolines, becoming more

northward with depth, lead to a cooling (warming) for shallow (deep) contour-depths.

3.7 Conclusions

We make the following conclusions:
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1. The construction of a zonal-mean meridional isopycnal streamfunction ¥; (Eq. (3.6))

with an exactly vanishing standing eddy part 1% (Eq. (3.8)) has to be performed by

zonal integration along depth-dependent horizontal isolines of time-mean buoyancy

b.

. If zonal integration paths approximate time-mean streamlines, one has to expect in

general that the standing eddy part f@} is only reduced, i.e. 1/3}‘ remains a constitutive
part of the total MOC ;. First of all, because the significant ageostrophic transport
in the surface layer is missed. Moreover, depth-dependent streamlines induce a term
with non-vanishing time-mean in the meridional transport velocity, which is related
to the vertical velocity and the vertical variation of the zonal integration paths (“non-

orthogonality term”).

. If b- or p-contours of a certain depth (“contour-depth”) are used at each depth,

the standing eddy part zﬁ} vanishes exactly only at the contour-depth (except the
surface layer for p). But, for adequate contour-depths, the overall standing eddy
part @/A)}* is significantly reduced (but not vanishing). For our model results, contours
at mid-depth (in surface layer) are most appropriate for b (for ). Hence, if a reduced
standing eddy part @Z} is sufficient, this approach represents a practical simplification

(“orthogonal coordinates”).

. Regarding the zonally averaged buoyancy distribution in our model results, the effect

of changing from latitude circles to curvilinear zonal integration paths is of the same
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order as changing from Eulerian to isopycnal averaging (for zonal integration along

latitude circles).

3.8 Appendix

3.8.1 General horizontal zonal integration paths

In order to consider general horizontal zonal integration paths, we have to turn to curvilin-
ear coordinates (m,n, Z) (see e.g. Aris (1989)). More precisely, we introduce a coordinate

transformation'® (where the Cartesian coordinates are denoted by (z,v, 2)),

(3.13)
(3.14)

.I'ZﬁC(m,n,g) ) y = y(m7n7é> )

N
Il
AN

an
Il
N

m = m(x7 y? Z) Y n = n<x7 y? Z) Y

such that the coordinate lines of m represent the new zonal integration paths. In our
context, n is defined via the contours of either b or p.

A set of Cartesian base vectors tangent to the new coordinate lines is given by
gm = (8mx> amya O) s gn = (8n$a 8ny> 0) ) gz = (82x7 82y> 1) ) (315)

such that the covariant metric tensor g;;, i, 7 = m,n, z, is given by the scalar products of
these base vectors (e.g. ¢mn = &m - 8n), and a basis of unit vectors tangent to the curvilin-
ear coordinate lines is given by €, = gm/\/Gmm, €n = &n/\/Inn, € = 8z//gzz. Since we
permit O;x # 0 and 0;y # 0 to hold, the curvilinear coordinate system is generally non-
orthogonal. However, we choose m such that the curvilinear coordinate system is horizon-
tally orthogonal (e, - e, = 0), and hence e,, = (V;,n/|Vyn|,0) and e,, = (Vym/|Vm|,0)
hold!*.

The velocity vector v may be expressed in this system of base vectors, v = u™g,, +
Vg, +w?gs, where the coefficients are the contravariant components of the velocity vector
v in the given coordinate system. These components are related to the corresponding
components of the velocity vector v in Cartesian coordinates, v = ue, + ve, + we;, via

(u™ v w?) = (Vm v, Vn-v,w).

10T hat is, the corresponding Jacobian exists and does not vanish at each point of our domain of definition.

11 V), denotes the horizontal gradient V; = (9,,8,). In our context, a function m, which satisfies
en - e, = 0, generally may be constructed via the integral curves of the normal vector field Vyn, in
case Oyn > 0 at each point.
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Finally, the zonal mean (at fixed depth) of any scalar quantity ¢ is given via the line

integrals along the coordinate lines of m (denoted by C,,),

g)(n) = / ¢ ds = / 40 (m), Ya()) /o i | (3.16)

where, for fixed n, (z,(m),y,(m)) = (x(m,n),y(m,n)) is regular parameterisation of C,,.
We transform each zonal-mean quantity [¢](n) to equivalent y-coordinates via areal inte-
gration (Tansley and Marshall, 2001): The equivalent y-coordinate of a coordinate line C,,

is given by the latitude y that encompasses an equivalent area to the south.

3.8.2 No-normal-flow boundary condition in curvilinear coordinates

and condition (ii) of section 3.5.2

We adopt the general framework of appendix 3.8.1. Let mp(n, Z) describe a zonal to-
pographic or continental barrier in the curvilinear coordinates (m,n,2). Then a normal
vector N of the barrier is given by N = g, — (0,mp)g, — (0:mp)gs;. Consequently, the

condition of vanishing cross-barrier velocity is given in curvilinear coordinates by

0 = N-V|m, (3.17)

= (U Gmm — V" GnnOpmp — wgzz0:mp — 2u™ ¢rz0zmp — 20" Gnz0:MB) |my -

Notice that the last two terms in Eq. (3.17) are due to the non-orthogonality of the
curvilinear coordinate system. In contrast, the Leibniz integral rule applies in the same

form as for Cartesian coordinates, e.g.

On /m " <\/§ v”> dm’ = / " an<¢§ v”) dm’ + (@ v”) s Oni - (3.18)

m

In order to satisfy condition (ii) of section 3.5.2 the corresponding boundary terms of Eq.
(3.17) and Eq. (3.18) have to cancel each other (or vanish on their own). E.g. in case of
orthogonal coordinates it would have to hold ¢, = gnn = ¢55. Consequently, Cartesian
coordinates represent the only familiar coordinate system, where condition (ii) is always
exactly satisfied by solely imposing the boundary condition of no-normal-flow at topo-
graphic barriers. Therefore, both types of zonal integration paths, horizontal time-mean
buoyancy contours and time-mean (geostrophic) streamlines, do not necessarily satisfy con-

dition (ii), but further boundary conditions have to be included. For example, in case the
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no-slip boundary condition is additionally applied (as in our experiments), i.e. the velocity
v vanishes at topographic boundaries, the boundary terms in Eq. (3.17) and Eq. (3.18)

vanish on their own.

3.8.3 The isopycnal streamfunction defined in isopycnal coordinates

The coordinate transformation to isopycnal coordinates represents the type of coordinate
transformations, which leave the horizontal coordinates unchanged, but alter the vertical

coordinate. In contrast to appendix 3.8.1, we have
rT=1, y = 7, z=z(Z,9,b) , b=0b(z,y,z2) . (3.19)

The properties of a coordinate transformation imply dyz = 1/0.b = o, 0z = —0,b/0,b =
sy and Ozz = —0,b/0.b = s,, where we introduced the thickness o and the zonal and

meridional isopycnal slopes s, and s,.

The Cartesian base vectors tangent to the new coordinate lines are now given by

gi: = (1707 S:c) ’ gﬂ - (07 ]-7 Sy) ) gy = (07070) ) (320)

and hence the coordinate transformation is fully non-orthogonal, i.e. the elements of the
covariant metric tensor g;; are all non-vanishing. Nevertheless, we have'? g = det(g;;) = 0.
The contravariant components of the velocity vector, v = u¥g; + vig; + wg,, are now
related to the corresponding components of the velocity vector in Cartesian coordinates,
v = ue, + ve, + we,, via (u®,v? w’) = (u,v,Vb-v). Consequently, we obtain for the

continuity equation, V - v = 0, in isopycnal coordinates (see Eq. 3.11)

an(oa) wa(o ) a(ow)] -0 s

b= 0(Vb-v) = —s,u—s,v+w. For steady state conditions (assumed so far), the

where cw

buoyancy budget reads v - Vb = @), and hence we obtain the so-called thickness equation

(o) +05(o0) v @) =0 (322)

12 Hence, o is the Jacobian. Of course, ¢ # 0 has to hold everywhere.
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Zonal integration along a closed path (with fixed ¢ and b) gives

oy <L;1[av]> + Oy (L;l[aQb]> =0. (3.23)

Consequently, the transport function

ba ba
Vi (7,ba) = —/ L, [ov] db = —/ 7{1) odzdb (3.24)
0 0

is a streamfunction, i.e. 9,¥; = —L[ov] and 950 = L o Q).

However, the condition o # 0 implies that isopycnal coordinates are possible only in
case of a strictly vertically monotonic density distribution. Then ¥, is identical to ¢; (Eq.
3.5).
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4 Residual-mean eddy streamfunction

and quasi-Stokes streamfunction

This chapter will be submitted as an article to Ocean Modelling.

4.1 Abstract

Using several idealised eddy-permitting zonal channel model experiments, the series ex-
pansion of the residual-mean eddy streamfunction and the quasi-Stokes streamfunction
are compared up to third order in buoyancy perturbation. In model configurations with
flat bottom, both streamfunctions may be well approximated by the first one or two leading
order terms in the ocean interior, although terms up to third order still significantly impact
the implied interior circulations. Further, differences in both series expansions up to third
order remain small here. Near surface and bottom boundaries, on the other hand, the
leading order terms differ and are initially of alternating sign and of increasing magnitude
such that the low order approximate expressions break down there. In more realistic model
configurations with significant topographic features, physically inconsistent recirculation
cells also appear in the ocean interior and are not effectively reduced by the next higher
order terms. A measure indicating an initially increasing or decreasing series expansion is

proposed for practical use.

4.2 Introduction

Eulerian averaging of velocities and tracers is usually considered as the simplest way of
averaging: Time and ensemble averages are performed at fixed position and space averages
are solely defined by the geometrical framework (i.e. by the coordinate lines of the geo-
metrically natural coordinate system). From a practical point of view, Eulerian averaging

appears to be the most straightforward averaging procedure, because the physical proper-
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ties of the fluid are not taken into account (Andrews and McIntyre, 1978a). Accordingly,
the Eulerian meridional transport streamfunction A, i.e. the zonally integrated meridional
transport of fluid across a given latitude y and below a constant height surface z, is defined
in regard to the space coordinates y and z.

However, A gives rise to spurious diabatic circulations such as the Deacon cell (D66s and
Webb, 1994). In an isopycnal averaging framework (Nurser and Lee, 2004a), the Deacon cell
is reduced and therefore the isopycnal meridional transport streamfunction, i.e. the zonally
integrated meridional transport of fluid across a given y and denser than a given density,
is considered as a more appropriate description of the meridional overturning circulation
(MOC). In order to obtain a physically meaningful MOC in the Eulerian framework, the
initial simplification (i.e. the insensitivity to the physical state of the fluid) has to be
revised and a more complicated redefinition of the total overturning streamfunction has
to be introduced. More precisely, two different approaches of constructing physically more
satisfying overturning streamfunctions in the Eulerian framework have been put forward:
the residual-mean theory (Andrews and Mclntyre, 1976; Eden et al., 2007) and the quasi-
Stokes streamfunction U* (McDougall and McIntosh, 2001; Nurser and Lee, 2004b).

The residual streamfunction ,.s is defined as the streamfunction which advects the
Eulerian-mean buoyancy and it is constituted as the residual of two parts: On the one
hand, the advection is due to the Eulerian-mean velocities (given by A), on the other
hand, there is an eddy-induced streamfunction * due to the advective part of the eddy
buoyancy flux. Physically, it is desired that, if there is no instantaneous diabatic buoyancy
forcing, there should be also no diabatic effects in the Eulerian-mean buoyancy budget, i.e.
the eddy-induced diabatic forcing should vanish too. Eden et al. (2007) (extending ideas
of McDougall and McIntosh (1996); Medvedev and Greatbatch (2004)) demonstrate, by
explicitly incorporating rotational eddy fluxes, that this physical criterion uniquely sets ¢*
and with it ,.s. However, 1* is then given by a series involving fluxes of eddy buoyancy
moments.

The quasi-Stokes streamfunction ¥* is the eddy-induced component of the total isopycnal
streamfunction expressed in Eulerian space (McDougall and McIntosh, 2001; Nurser and
Lee, 2004b). That is, the isopycnal streamfunction in Eulerian space may be given by
the sum of A and ¥* and advects the isopycnally averaged buoyancy'. McDougall and
MeclIntosh (2001) (see also Nurser and Lee (2004b)) apply a Taylor series analysis centerd

around the mean height of isopycnals in order to express W* by Eulerian-mean quantities.

I The isopycnally averaged buoyancy is defined as inverse function of the mean height of isopycnals
(McDougall and McIntosh, 2001; Nurser and Lee, 2004a).
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Consequently, U* is given in two ways: On the one hand, it may be computed out of an
isopycnal averaging framework. On the other hand, ¥* may be given directly in Eulerian
space (i.e. in height coordinates) and is then expressed by a series expansion. Of course,
this series expansion is different to the one of the residual-mean eddy streamfunction *,
however, both are intimately connected as we discuss in this study.

Hence, if physically meaningful streamfunctions of the MOC are sought directly in the
Eulerian framework, it seems that the appearance of series expansions generally represents
a necessary and severe complication. Most problematic is that, practically, it is inevitable
to cut off the series expansions at a certain order and hence one is left with approximate
formulas. Typically, in a zonal-mean framework the first order terms of both series ex-
pansions are considered as good approximations in the nearly adiabatic ocean interior,
but near horizontal boundaries (surface, bottom) the approximate formulas are found to
break down, i.e. unphysical nonzero (and relatively large) values appear at the horizontal
boundaries (Killworth, 2001; McDougall and McIntosh, 2001; Nurser and Lee, 2004b). A
physically satisfactory solution of this serious problem is outstanding. In this study, this
problem will be further explicated.

The subjects of this study are the following: We formally compare the first three orders
of the series expansions of ¥* and ¥* in order to specify the essential differences between
these two intimately linked streamfunctions at low orders. Furthermore, we consider all
terms up to the third order of both series expansions in different idealised models of the
Southern Ocean (SO) in order to investigate the behaviour of both series expansions in
different concrete model setups. It will turn out that, in a zonal-mean framework, the
problems due to the convergence behaviour of both series expansions are more severe and
hence the limitations of both approaches are stronger than discussed so far. Finally, we
propose a measure to diagnose regions in the ocean where approximations of the series
expansions break down.

The study is structured as follows: In section 4.3 we present our different model setups
and experiments. In section 4.4 we consider the series expansion of the residual-mean eddy
streamfunction 1*, while in section 4.5 we turn to the Taylor series of the quasi-Stokes

streamfunction U*. Finally, section 4.6 provides a summary and discussion.
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4 Residual-mean eddy streamfunction and quasi-Stokes streamfunction

4.3 Models and experiments

In this study we use the code of CPFLAME? in two different configurations. The first con-
figuration is largely a reproduction of the model setup considered in the study of Nurser and
Lee (2004a,b), who used an idealised eddy-permitting zonal channel model in order to com-
pare the isopycnal transport streamfunction with the quasi-Stokes first order approximation
given by Eulerian-mean quantities. In our version, the primitive equations are formulated
in Cartesian coordinates. The zonally reentrant channel extends over L, = 600km in zonal
direction and L, = 1000km in meridional direction with 10km horizontal resolution. It is
1000m deep with 20m vertical resolution. The beta-plane approximation is used with a
reference latitude situated at 49.31°S, such that at the center of the channel the Coriolis
parameter becomes the one at 45°S for spherical coordinates. We simulate only buoyancy
b in the model, which might be thought as proportional to temperature. The model is not
forced with winds, but the circulation in the model is driven by three buoyancy restoring
regions: At the surface, b is relaxed towards a target buoyancy varying linearly between
21.764 x 1073ms™2 at y = 95km and 45.269 x 1073ms~2 at y = 905km with a restoring
time scale of 7 days. Within the southernmost 95km and the northernmost 95km, model
buoyancies are relaxed throughout the water column to specified values: linearly varying
with depth from 19.346 x 10~3ms~2 at the surface to zero at the bottom in the southern
zone and from 48.365 x 1073ms~2 to zero in the northern zone. The relaxation rate varies
linearly between 1/(2 days) at the boundaries, and zero at the inner edges of the relaxation

1'and we use a horizontal biharmonic viscosity of

zone. Vertical viscosity is 5 x 10~#m?s~
1.25 x 10" m*s~!. The linear bottom friction parameter is 2 x 10~°s~!. Vertical diffusivity
is 5 x 107°m?2s~!, but we use no explicit lateral diffusion. The Quicker advection scheme is
used as the advection scheme of buoyancy. The model was run for a total of 30 years. The
diagnostics below are presented as temporal averages over the last 10 years of the run. We
refer to this experiment as the NL case.

The second configuration is the idealised SO model setup introduced and discussed
by Viebahn and Eden (2010, 2012), i.e. an eddy-permitting primitive equation model
consisting of a zonally reentrant channel, which is connected to a northern ocean basin
enclosed by land. The circulation in the model is driven by a sinusoidal westerly wind
stress over the channel with a magnitude of 7 = 1 x 107*m?2s~2, and a surface restoring
boundary condition for buoyancy b (again, there is only buoyancy in the model). The

corresponding target buoyancy increases northward over the channel, remains constant

Zhttp:/ /www.ifm.zmaw. de/~ cpflame
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over the southern half of the northern ocean basin and decreases while approaching the
northern end of the domain. Boundary conditions on the northern and southern edges of
the domain are simply given by no-flux conditions. Hence, the watermass distribution is
solely determined by the surface boundary conditions. The domain of the idealised model
extends over L = 2520km in the zonal and meridional direction, with 20km horizontal
resolution and 40 vertical levels with 50m thickness (1900m maximal water depth). The
channel (i.e. the SO) extends from the southern boundary (z = Okm) to x = L/2. Further
details may be found in Viebahn and Eden (2010, 2012). In particular, we consider the same
two experiments already discussed by Viebahn and Eden (2012) in an isopycnal averaging
framework. In the flat case experiment, the bottom is completely flat. In the hill case
experiment, a simple hill-like topographic feature is imposed in the channel: The top of
the hill is located at z = —950m and = = 0 (and x = 2520km respectively). According to
an exponential map the height of the hill decreases eastward (westward), such that at the
longitudes of the northern ocean basin (from x = 850km to x = 1690km) the channel has
a flat bottom. In both experiments, the model has been run for 240 years. Additionally,
we introduced harmonic viscosities, which act to damp EKE, in both experiments, in order
to discuss the convergence behaviour of the series expansions of both ¥* and ¥* subject
to the “strength” of the eddy field. In the flat case, we introduced A; = 2000m?s~! and
the model has been run for another 50 years, i.e. 290 years in total. In the hill case, we
introduced A;, = 2000m?s~!, A, = 5000m?s~! and A; = 10000m?s~! respectively after 200
years of the initial model run and the model has been run for another 60 years, i.e. 260
years in total. In each experiment the time-mean is performed over the last 10 years.

In a way, the NL case represents the simplest model configuration in this study: Due
to the lack of both zonal wind stress and the connection to a northern ocean basin, the
time-zonal-mean meridional velocity v disappears almost completely in the NL case and
hence it holds A ~ 0, in contrast to the wind-driven flat case and the hill case experiments.
Since A generally opposes the eddy-induced streamfunctions in the SO, the wind-driven
model configuration shows eddy-induced streamfunctions of higher magnitudes at equal

magnitudes of the overall overturning circulation.

4.4 Residual-mean framework

In a time-zonal-mean context, each quantity ¢ generally may be decomposed into its tem-

poral and zonal average ¢ and its temporal and zonal deviation ¢ = ¢ —7¢q, i.e. ¢ =7+ ¢'.
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4 Residual-mean eddy streamfunction and quasi-Stokes streamfunction

The time-zonal-mean residual streamfunction ,.s(y, z) is defined as the meridional
streamfunction, which advects the Eulerian time-zonal-mean buoyancy b. As outlined
in appendix A, it is given by the sum of the time-zonal-mean Eulerian streamfunction A
(defined by Eq. (4.14)) and the eddy streamfunction ¢,

7vbres = K+ '9/1* . (41)

A physically consistent determination of ¢* (and with it v,.5) was given by Eden et al.
(2007) by explicitly incorporating rotational eddy fluxes (see appendix A for a synopsis).

¥* is then given by a series involving fluxes of eddy buoyancy moments (see Eq. (4.22)),
— 1
Vb = —J) + OmJa2 — iﬁiJg + 0, (4.2)

where 0,,() = |Vb|~'Vb - V|Vb|7}() and the J, = F, - Vb|Vb|~! represent the along-
isopycnal fluxes of the eddy buoyancy moments®. The te;minology O(b") indicates ad-
ditional terms that are of fourth or higher order in buoyancy perturbations. The orders
of the series expansion (4.2) are defined solely by the fluxes of 6™, i.e. via the order of
the eddy buoyancy moment. The first order term in the expansion for ¢* is identical to
an eddy streamfunction of the transformed Eulerian mean (TEM) framework (Andrews
and Mclntyre, 1976, 1978b). The remainder of the expansion is due to the introduction
of the rotational flux potential 6 (see Eq. (4.23)). In the interior ocean, it typically holds
0,b] < |0.b] and |w| < |v| and we obtain

Lot 1 Lodov 11 1 LI¢3U)> "
=S - — _—az e ——_82 —_32 = O(b 4.3
v o.b  0.b ( d.b >+2azb <azb ( 0.b O (4:3)

Now we consider the first three orders of the series expansion of the residual-mean eddy
streamfunction ¥* in our different model experiments. Notice that we calculated the terms
as given by Eq. (4.2), but that differences to the terms as given by Eq. (4.3) are small in
the entire model domain (including the diabatic boundary regions). In the following, we

index the terms of the different orders of the series expansion of ¢* by Roman numerals,
Lo, ¢ = f + ¥+ Yin + Yy + e

3 The eddy buoyancy " moments are defined as ¢, = b'™ /n and the fluxes of the eddy buoyancy moments are
given by F,, = L, (v¢,, we,, ), where n represents the order. The operator V is defined as V = (-0, 0,).

See appendix A for more details.
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Figure 4.1: The first three terms of the series expansion of ¥* for the NL case: ] =
—J1/IV0| (a), ¥}, = OmJa/|V| (b), ¥}, = —202,J5/|VD| (c) and the corre-
sponding residual streamfunctions including terms of ¥* up to the first (d),
second (e), third (f) order. The contour interval is 0.5Sv and zero lines are
thick.

4.4.1 NL case

Fig. 4.1 a) shows the first term ¢} = —.J; /|Vb| of the series expansion of 1* (see Eq. (4.2)),
i.e. the TEM eddy streamfunction, and Fig. 4.1 d) shows A + 1}, i.e. the TEM residual
MOC of the NL case. Since A ~ 0 (not shown) due to the lack of zonal wind stress, both
are largely identical, showing an anti-clockwise MOC with mainly along-isopycnal flow in
the ocean interior and strong diapycnal flow in the three buoyancy restoring regions (but
no bottom boundary layer). Only at mid-depth around y = 750km, the TEM residual
MOC is slightly reduced in magnitude compared to 1. However, physically inadequate is
the extremely strong recirculation cell in the surface layer, which does not tend to zero at
the surface (in Fig. 4.1 we simply set the surface values to zero).

Nurser and Lee (2004b) find a similar circulation pattern (see their Fig. 1). They
discuss the unphysical surface circulation in the context of the classical TEM formalism,
but the approaches of solving the problems at the boundaries by merging different eddy
streamfunctions into each other are only partially successful and of unclear physical basis,

hence remain unsatisfactory. In the physically logical approach of Eden et al. (2007), which
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we adopt in this study (see appendix A for a synopsis), the problems at the boundaries
are theoretically solved by incorporating the appropriate rotational eddy flux (given by
Eq. (4.23)). However, since the appropriate rotational eddy flux is only given by a series
expansion, the practical problem of including a sufficient number of terms of the series
expansion in order to obtain an adequate approximation emerges.

Fig. 4.1 b,c) show the second term 1, and the third term 17j,; of the series expansion
of ¢*. In line with the expectation that ¢} represents a good approximation of ¥* in
the nearly adiabatic ocean interior, the dominant values of the next higher order terms
Y5, and ¥y, are found in the surface diabatic boundary layer (for ¢}, and i}, as well,
not shown), although changes of the corresponding residual MOCs (Fig. 4.1 e,f)) are also
visible in the ocean interior (compare also Fig. 4.1 d-f) with Fig. 4.6 a)). More precisely,
17; mainly opposes the surface layer circulation of 7, while 1};, amplifies it again. Hence,
the series expansion (4.2) (or Eq. (4.23)) appears to be alternating, which is obvious in
Fig. 4.1 a-c) and continued for the next higher order terms 7, and v}, (not shown).
This behaviour hampers the determination of an order at which the series expansion may
be appropriately cut off, since the next higher order always compensates a part of the
previous order. Moreover, it holds |¢7;| < |¥};;] in the surface layer. More generally, the
ratio |¢7|/]¥F] (not shown) increases with increasing order ¢ in the surface boundary layer,
while it decreases in the ocean interior. That is, the magnitude of the terms of the series
expansion (4.23) appears to be increasing in the diabatic surface region with increasing
order, while a decreasing behaviour, which is found in the ocean interior, is necessary for
an adequate approximation of ¢/* by low order terms.

We conclude: In the NL case, the series expansion of ¢* may be adequately approximated
by low order terms in the ocean interior, since there they appear to be decreasing with
higher order - ¢7 alone already may seem sufficient (but notice section 4.5.3). However, in
the diabatic surface boundary layer the series expansion of 1* is alternating and initially
increasing®, which precludes an adequate approximate surface layer representation by low
order terms, i.e. leads to the “break down” of an approximation of ¢*. Hence, the series
approach of Eden et al. (2007) seems to be unable to practically solve the problems at the

boundaries appearing in the residual-mean framework.

4 In this study, we call a series expansion s = Y2, s; increasing (or decreasing), if the magnitude of the
terms of s is increasing (or decreasing) with higher order i, i.e. |s;| < |s;4+1] (or |si| > |Sit1])-
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Figure 4.2: The first three terms of the series expansion of ¢* for the flat case: ¥} (a), ¥j;
(b), ¥%;; (c) and the corresponding residual streamfunctions including terms of
Y* up to the first (d), second (e), third (f) order. (g-i) and (j-1) show the same
quantities, but for the flat case experiment including a harmonic viscosity of
Aj, = 2000m?s~!. The contour interval is 0.5Sv and zero lines are thick.

95



4 Residual-mean eddy streamfunction and quasi-Stokes streamfunction

4.4.2 Flat case

Fig. 4.2 a) shows 17, i.e. the TEM eddy streamfunction of the flat case, which shows the
well-known eddy-induced streamfunction behaviour in the SO (extending from z = Okm
to x = L/2): A strong negative circulation pattern, which opposes the positive circulation
pattern of A (not shown, see e.g. Viebahn and Eden (2012)) in the SO, such that the
sum of both, i.e. the TEM residual streamfunction shown in Fig. 4.2 d), is given by two
global overturning cells. Namely, a positive circulation cell which connects the SO and the
Atlantic and a bottom reaching negative circulation cell. We notice that, on the one hand,
the residual MOC in the SO is of equal magnitude as the residual MOC of the NL case®,
but, on the other hand, the magnitude of ¥ is significantly larger, since A is not small.
However, we find problems at the boundaries analog to the problems already encountered in
the NL case. ¢} now shows large and unphysical® negative recirculation cells in the surface
boundary layer and in the bottom boundary layer in the SO, which are also present in
the TEM residual MOC A + 3. Due to the coarser vertical resolution of our second
model configuration, we can not discuss in detail the boundary layer behaviour of the next
higher order terms of the series expansion of 1*. Nevertheless, the few boundary layer
values suggest the same unsolved practical problem as in the NL case, namely, next higher
order terms 1} of increasing magnitude such that an adequate approximate boundary layer

circulation given by low order terms is impossible.

But we can consider the behaviour of the subsequent terms of the series expansion of ¢*
in the ocean interior. Fig. 4.2 b,c) show ¢, and ¥;,;. As expected, ©f dominates over ¢,
and ¢7;; in the interior of the SO. However, both 17, and v¢7;;, although being smaller than
1] everywhere in the interior of the SO, show magnitudes of the same order as 17 below
z = —950m and at mid-depth around y = 1000km. Moreover, we notice the strong changes
in the diabatic northern convective region. Hence, both terms induce significant changes
in the residual MOC (Fig. 4.2 e,f)): Especially the negative circulation cell changes both
magnitude and circulation pattern by the inclusion of each term. In case both ¥7; and ¥j;;
are included (Fig. 4.2 f)), the streamlines of the residual MOC in the SO are significantly

more aligned along the time-zonal-mean isopycnals in the interior (compare Fig. 4.2 d-f)

® That is, the watermass transformations are similar in both cases (Walin, 1982; Marshall and Radko,
2003).

6 We note that “unphysical” primarily means that 1% does not tend to zero at the horizontal boundaries,
while, for averaging along latitude circles, negative recirculation cells at the surface are also found in
an isopycnal averaging framework - as shown for both the flat case and the hill case in Fig. 4.6 b,c)
and discussed by Viebahn and Eden (2012).
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with Fig. 4.6 b,e)). Hence, in the flat case the inclusion of the next higher order terms 7,

and 17, distinctly improves the approximation of 1* by )7 alone.

Furthermore, v7; mainly opposes the interior circulation of 7, while ¢7;, largely am-
plifies it. That is, the series expansion of ¢* is again alternating (similar to the NL case),
which is obvious in Fig. 4.2 a-c) and continued for the next higher order terms 7, and ¢},
(not shown). However, with increasing order i the ratio |1}|/|¢f| (not shown) decreases in
the interior of the SO, which suggests that the desired behaviour of an in general decreasing
series expansion essentially holds in the interior of the SO. We can conclude: In the flat
case, the series expansion of ¥* is alternating and may be adequately approximated by low
order terms in the ocean interior, since there they appear to be decreasing. However, the
next higher order terms 7, and 1}, significantly improve an approximation of 1* by 17
alone. Hence, the series approach of Eden et al. (2007) represents an advancement of the

description of the ocean interior circulation within the residual-mean framework.

Now, in order to minimise the impact of the next higher order terms v7; and v¥7;;, i.e. in
order to obtain a faster convergence of the series expansion of ©* in the interior of the SO,
we introduced a harmonic viscosity of A, = 2000m?s~! in the flat case. A, acts to damp
EKE and hence the corresponding TEM eddy streamfunction v, shown in Fig. 4.2 g), has
a weaker but still strong negative circulation cell in the SO (while the negative circulation
in the northern convective region is increased and extended). The TEM residual MOC,
i.e. A+7 (Fig. 4.2 j)), shows a significantly weaker bottom reaching negative circulation
cell, while the global positive circulation cell extends much deeper, but remains of the
same magnitude in the SO (of course, also A (not shown) changes). The next higher order
terms ¢, and 1};; shown in Fig. 4.2 h,) (as well as ¢}, and 9}, not shown) are now
significantly reduced (except for an increase in the northern convective region), such that
in the interior of the SO, ¥* is essentially given by 7. Only in a small band at mid-depth
around y = 1000km the next higher order terms %7, and j;; show significant values,
which almost disappear for 7, and ¢}, (not shown). The reduced impact of the next
higher order terms is more accurately expressed by the behaviour of the ratio |¢}|/|]]
(not shown), which is also drastically reduced in the interior of the SO. Consequently,
in the flat case the impact on the TEM eddy streamfunction ¢; by the gauge potential
introduced by Eden et al. (2007) (see Eq. (4.23)) related to rotational eddy fluxes depends
directly on the “strength” of the eddy field, i.e. the magnitude of the EKE. Hence, if the
EKE is adequately reduced, it seems acceptable to approximate ¢)* by %] in the nearly

adiabatic interior of the SO in the flat case. We notice that the series expansion remains
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Figure 4.3: The first three terms of the series expansion of ¢* for the hill case: ¥} (a), ¥,
(b), ¥%;; (c) and the corresponding residual streamfunctions including terms of
¥* up to the first (d), second (e), third (f) order. The contour interval is 0.5Sv
and zero lines are thick.

alternating and note that in the diabatic regions at the surface, at the bottom and at the
northern and southern boundaries convergence is far from being reached by including the
first three orders (see Fig. 4.2 g-1)).

4.4.3 Hill case

Fig. 4.3 a) shows the TEM eddy streamfunction 1} of the hill case. Compared to the
flat case, the negative circulation is reduced at topographic depths, in particular a bottom
boundary layer is absent. This is in accordance with the geostrophic return flow of A (not
shown, see Viebahn and Eden (2012)) in the hill case, which extends over the depth range
below the hill depth and is not confined to a bottom boundary layer as in the flat case. On
the other hand, the number of local maxima in 17 is increased: One local maximum is found
above topography around y = 800km and 500m depth. Moreover, meridional recirculation

cells appear around the hill depth” (2 = —950m), which induce a negative and a positive

7 Note that in the isopycnal eddy streamfunction meridional recirculation cells around the hill depth do
not appear, as shown by Viebahn and Eden (2012). See also Fig. 4.6 c).
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recirculation cell around the hill depth in the TEM residual MOC A + ¢} (Fig. 4.3 d)).
These recirculation cells represent strong diapycnal flow and hence contradict the physical
picture of a nearly adiabatic flow in the interior of the SO. Consequently, we would expect
the next higher order terms to reduce these cells in order to obtain a physically more
consistent circulation pattern.

Fig. 4.3 b,c) show v73,; and ¢3;;. While 93, and 1};, exhibit the same circulation
pattern in the Atlantic part as in the flat case, they are drastically increased in the SO
part, in particular around the hill depth (along the entire meridional extension of the
SO) and above topography (around y = 800km and 400m depth). The maximal values
now lie around the hill depth and not near the bottom as in the flat case. j; partially
compensates for the spurious diabatic recirculation cells in the residual MOC A + ¢} with
a negative circulation around y = 900km and a positive circulation around y = 400km
at the hill depth. Nevertheless, the inclusion of 3, appears to overcompensate (Fig.
4.3 e)): The number and the magnitude of the recirculation cells around the hill depth
and above topography is increased such that the overall circulation pattern becomes more
unphysical. This tendency of intensifying the recirculation cells and complicating the
circulation pattern continues, if ¢}, is included (Fig. 4.3 f)).

Furthermore, the magnitude of v¢7;; is even larger than the magnitude of ¢7; for most
parts of the SO. More precisely, we find that with increasing order i the ratio |¢}|/[¢]]
(not shown) increases in the interior of the SO, with values greater 1 around the hill depth
already for i = I1. As in the flat case, the next higher order terms ¢, and 3,; (also ¢},
and v}, not shown) of the series expansion of ¢* still show a type of alternating behaviour,
but the behaviour of a decreasing series expansion seems to be completely lost in the hill

case.

This drawback of a, at least initially, increasing series expansion does not disappear, if
a harmonic viscosity Ay, is introduced in the hill case®. By increasing Ay, expectedly the
overall magnitude of the TEM eddy streamfunction 17 decreases. Moreover, the circulation
pattern of 7 deforms with increasing Ay, such that the negative recirculation cell at the
hill depth of the residual MOC A + ¢} decreases. For example, if A, = 10000m?s~" is
used, the negative circulation cell of the TEM residual MOC is nearly void of recirculation
cells in the nearly adiabatic interior, but the accompanying positive recirculation cell is
drastically increased. While A, = 2000m?s~! has a rather small impact on 1* and the
residual MOC in the hill case, A, = 5000m?s~! leads to the strongest reduction of the next

8 We do not show further hill case figures due to their physical disqualification.
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Figure 4.4: Series number S for the NL case (a), the flat case (b) and the hill case (c).
Contour lines are 0.1, 0.2, 0.4 and 1.

higher order terms 7, and ¢}, (in particular above topography) for our set of A; values.
Nevertheless, for all three values of Aj, the next higher order terms ¢} (we considered terms
up to i = V') conserve the previous features: In an alternating manner, the magnitudes
increase and the circulation patterns complicate with higher orders 7. In particular, the
ratios |1f|/|¢7| (not shown) increase in the SO with more and more regions in the SO of

values greater than 1.

Consequently, in the hill case the series expansion of ¥* may not have a reasonable cut
off, since it seems to be, at least initially, an increasing series expansion in broad regions
of the SO. Now even in the interior the residual-mean approach, both in its classical TEM

version and in its advancement by Eden et al. (2007), is dissatisfying.

4.4.4 Series number

In the previous sections, we demonstrated that an approximation of ¥* by low order terms
of its series expansion is impossible in certain regions of the ocean, since the series expansion
of 1* is increasing there. These regions are mainly the horizontal boundary layers, which
are generally characterised by diabatic processes, i.e. by large diapycnal diffusivities. An
exception we found in the hill case, where the series expansion of ¥* is also increasing
at mid-depth above topography. We are able to give an indicator of whether the series
expansion of ¢* is initially increasing or decreasing by consulting the results of Eden et al.

(2009b). They were able to derive the generalised Osborn-Cox relation,

K+ p=p(l+C)exp(—DV) , (4.4)
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which relates the turbulent diapycnal diffusivity « to the molecular diffusivity p, the Cox
number C' = |V¥|?/|Vb|?> and the dimensionless ratio DV relating the buoyancy pertur-
bation with the mean curvature scale D = (V2b)/|Vb|?. The ratio Db’ appears in the
argument of the exponential map, which represents a standard example of a converging
series which is initially increasing, if the argument is greater than 1. Hence, as a measure of
whether the series expansion of «, given by Eq. (4.4), is initially increasing or decreasing,

we define the series number,
S =|D[\/26s , (4.5)

such that we expect for S > 1 (or near 1) an initially increasing series expansion. Since k
appears on the one side and ¢* on the other side of the Eulerian mean buoyancy budget
(see Eq. (4.16) in appendix A), we carry this criterion over to the series expansion of ¥*.

Fig. 4.4 a) shows S for the NL case. As expected, we find S > 1 only in the surface
boundary layer. Below the surface boundary layer, it holds S < 1, with the highest values
near the bottom. Fig. 4.4 b) shows S for the flat case. We find S > 1 in the southern
surface boundary layer, the northern convective region and in the bottom boundary layer®.
In the ocean interior of the SO, it holds S < 1. Introducing Aj (not shown) generally
decreases S in the interior of the SO, but increases S in the boundary layers and in the
Atlantic part. Finally, Fig. 4.4 ¢) shows S for the hill case. As expected, we find S > 1 now
at the top of topography and not at the bottom in the SO, while in the rest of the ocean
interior it holds S < 1. In particular, at mid-depth above topography in the SO, where
the series expansion of ¢* is initially increasing, S is increased compared to the flat case,
but we still have S < 1. Hence, in regions of smaller diapycnal diffusivity the criterion is
of reduced evidence. For Aj, = 5000m?s~! the series number S decreases at the hill depth,
but it still holds S > 1 (not shown). For A;, = 10000m?s~! the series number S is again
drastically increased in the entire domain (not shown).

Consequently, in the diabatic boundary regions and at topographic depths the series

1'% measure in our model experiments of whether the series

number S represents a successfu
expansion of ¥ is, at least initially, increasing or not, while in the nearly adiabatic interior

above topography the criterion is of reduced evidence in the hill case.

9 In the boundary layer of the SO, the values of S are around 0.96 (and the lowest two grid points are
missing due to the second order derivatives), while in the cases with A, S significantly exceeds 1 in
the bottom boundary layer of the SO.

10 Notice that the ratios |17 |/[¢}| (not shown) generally are greater than 1 in the bottom boundary layer
of the Atlantic part, so that S > 1 is appropriate there.
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4.5 Quasi-Stokes streamfunction

Assuming that the buoyancy field b(zx,y, z,t) is vertically strictly monotonic in the en-
tire ocean, the instantaneous isopycnal b, lies at an instantaneous height z(x,y,b,,t) =
24(y, ba) + 25 (2, y, ba, t), where z, is the time-zonal-mean height of b, and 2! is the deviation
from the time-zonal-mean, i.e. z/ = 0. The time-zonal-mean isopycnal streamfunction vy
is then the temporally averaged and zonally integrated meridional transport below the

instantaneous isopycnal b,. We may write
e Za+2),
D1(y,ba) = —La / vds (4.6)
bottom

o7 may be transformed to Eulerian space by identifying each b, with its mean height z,.

Therewith, the quasi-Stokes streamfunction U* is defined via the decomposition

Za+2l o
— Lx/ vdz=Ay,z.) + V" (Y, 2a) , (4.7)
bottom
that is,
Za+2!
U (y, z4) = —Lm/ vdz, (4.8)

and gives the transport of i related to the perturbation z/. W* is the eddy-induced
streamfunction of ¢; in Eulerian space'!. Expressions of both 2/ and ¥* by Eulerian
mean quantities may be obtained by expanding b and v in Taylor series centerd around
2o (McDougall and McIntosh, 2001; Nurser and Lee, 2004b) as outlined in appendix B. If
we define the orders of the series expansion by the perturbations of b in order to obtain a
form comparable to the residual-mean framework (see Eq. (4.2) and Eq. (4.3)), we find
the following series expansion for ¥* expressed by Eulerian mean quantities (see appendix
B)

U = U4 U+ U, 4 O (4.9)

where

1 In Viebahn and Eden (2012) the corresponding decomposition is defined in an isopycnal framework.
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4.5.1 Comparison of )* and U*

It is obvious that the complete series expansions of ¥* and W* are essentially different,
since ¥* and U* advect different time-zonal-mean buoyancy distributions. However, the
corresponding time-zonal-mean buoyancy distributions mainly differ in the boundary lay-
ers, while in the nearly adiabatic interior of the ocean they are generally found to be
similar (Killworth, 2001; Nurser and Lee, 2004a; Viebahn and Eden, 2012). Hence, the two
streamfunctions are expected to be similar there too.

By comparing Eq. (4.9) with Eq. (4.3), the similarity of ¢* and ¥* is suggested by the
identity of the first order terms. However, we find that with increasing order the series
expansions of ¢* and ¥* deviate more and more from each other. The difference between
the second order terms, 1'A;;, is given by a term including the time-zonal-mean meridional
velocity, which is generally small in a zonal channel. The difference between the third
order terms is constituted by a corresponding term, ¥ ;;;,, including the time-zonal-mean
meridional velocity and an additional term, 14, of a type not present in the residual-
mean series expansion, namely, a product of a first order term (the vertical derivative of
U%) with a second order term (a variance term). For higher order terms we expect even
more complicated discrepancies, especially further products between different orders, i.e.
types of terms not present in the residual-mean series expansion.

Moreover, only in case of ¥* we are able to compute the streamfunction directly in
an isopycnal framework without referring to the series expansion (Nurser and Lee, 2004a;
Viebahn and Eden, 2012). Hence, we know the result to which the series expansion of
U* must converge. In case of ¥*, we do not have another computational option besides
the series expansion. Especially in the diabatic regions, the residual-mean circulation may
therefore not be properly determined so far, as demonstrated in section 4.4. Furthermore,

it is not even secure so far that the residual-mean series is a converging series expansion.
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Figure 4.5: ¥4 7, YAr17o a0d ¥4, for the NL case (a-c), the flat case (d-f) and the hill
case (g-1). The contour interval is 0.5Sv and zero lines are thick.

Up to now, the advantage of the residual-mean series over series expansion of ¥* is that

it is given in a compact and complete form, while we have not found a corresponding

expression for the series expansion of ¥* yet.

Now we return to our three model experiments.

In each case, we discuss the three

additional terms appearing in Eq. (4.9) and not in Eq. (4.3), and we consider the stream-

function to which the series expansions U* has to converge .
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4.5.2 Differences between the series expansions of )* and V* in

model experiments

Fig. 4.5 a-c) shows ¥}, YA 17, and ¥4, for the NL case. Both ¢}, and ¥% ., related
to T ~ 0, essentially vanish, even in the surface boundary layer (as far as it is resolved).
In contrast, the third order difference term v3;;,, related to the product of a variance
term and an eddy buoyancy flux term, exhibits significant values in the surface boundary
layer. Consequently, the difference between the terms of the series expansions of ¥* and ¢*
appears to increase with higher order. In accordance with our expectation, the differences
YA Yarrre and YA, suggest that ¢* and ¥* mainly differ in the diabatic surface layer,
while they are similar in the nearly adiabatic ocean interior. More precisely, YA, is of
the same sign as ¢j;; (Fig. 4.1 ¢)) in the northern part of the channel, while ¥}, is
opposing v¥7;; in the southern part of the channel. Hence, the maximal absolute values of
U7, are slightly smaller than those of ¢7;;. This might indicate that the series expansion
of U* converges faster then that of ¢*. Nevertheless, the overall characteristics of the low
order terms of the series expansion of U* remain those described in section 4.4.1.

Fig. 4.5 d-f) show ¥4, YA 17, and ¥}, for the flat case. In line with our expectation,
each term is small in the interior of the ocean, such that also the second and third orders
of the series expansions of {* and W* coincide in the ocean interior for the flat case (with
characteristics described in section 4.4.2). In particular, the terms v}, and ¥}, are
small in the interior, although it holds © # 0. Significant values of VA ;;, YA, a0d YA 17
are visible in the northern convective region, while in the surface and bottom boundary
layers they are only obvious for ¢}, (and probably lost due to the few vertical grid points
and the smaller extension for ¥} ;; and 14 ,;;,)- The significant values tend to counteract
the corresponding next higher order contributions shown in Fig. 4.2 b,c). Furthermore and
similar to the NL case, the term of highest order in perturbation quantities, ¥ ;;,, exhibits
the highest values in the northern convective region and in the southern bottom and surface
boundary layers. This tendency of increasing compensation again might indicate that the
series expansion of U* converges faster than the one of ¢* in the diabatic regions in the
flat case.

By including a harmonic viscosity of A, = 2000m?s~! in the flat case configuration
(not shown), the situation is essentially unchanged: The terms ¥}, YA 7. a0d YA
remain small in the ocean interior. In accordance with Fig. 4.2 h,i), the magnitudes of the
significant values in the boundary regions are increased compared to the case of vanishing

Ap, such that significant values also appear in ¢ ;; in the surface layer. The term ¥},
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still shows the highest values, in particular in the southern bottom and surface boundary
layers of the SO, so that a tendency of increasing compensation is furthermore present.

So far all considered cases are in line with expectations: In the ocean interior ¢)* and
U* essentially coincide, while in the boundary regions significant differences between *
and U* are given by YA, YArrr. and YA 7, such that the next higher order terms of the
series expansion of U* tend to be smaller than the corresponding terms of *.

Turning to the hill case, the question is: Do the additional terms ¥x;;, YA, and
YA add to the residual-mean terms at each order such that the series expansion of U*
is decreasing and that the recirculation cells in the ocean interior, encountered in section
4.4.3, disappear? This is not the case. Fig. 4.5 g-1) show ¥}%,;, ¥, and ¥4, for the
hill case. In the Atlantic part (x > 1250km), each term shows nearly the same pattern
as in the flat case, similar to the terms 17, ¥7; and ¥j;; encountered in section 4.4.3.
However, in the SO now significant values appear in the ocean interior. The second order
term 1, related to v, exhibits a small negative recirculation cell around y = 800km at
1100m depth. This leads to a small reduction of the corresponding positive recirculation
cell in Fig. 4.3 e), but the overall pattern remains unchanged (not shown). The same
holds for the third order: Although v¢'};;,,, related to v, vanishes, ¥4, induces a strong
positive recirculation cell at the hill depth and a smaller one at mid-depth (y = 900km
and z = —400m), which, however, only slightly change the circulation pattern of Fig. 4.3
f) (not shown). Consequently, also in the hill case we find that the significant values of the
next higher order terms of the series expansion of U* tend to be reduced compared to than
those of ©¥*. But the overall circulation pattern in not essentially changed by including the
lower orders, so that the unphysical recirculation cells in the ocean interior remain.

Including a harmonic viscosity A, in the hill case configuration does not change the
situation. In case of A, = 5000m?s™' (not shown), the magnitudes of both ¢%,, and
Yas, are reduced in the ocean interior, but still significant, while {3 ;;;, now shows a
negative recirculation cell around y = 800km at 1100m depth. However, the unphysical
circulation patterns are only slightly changed by the inclusion of the quasi-Stokes terms (not
shown). The analog situation is met if Ay, is set to A, = 10000m?s™! (not shown). Each
term exhibits recirculation cells around the top of topography with drastically increased
magnitudes. However, since the magnitudes of v;; and 7 are even more increased, the

overall effect remains small (not shown).

106



4.5 Quasi-Stokes streamfunction

10 10

a)
-200
-400
z[m]

-600

-800

4 ~— 4
0000 0

1000 1500 2000 2500 0 500 1000 1500 2000 2500
y y [km;

[km]

—-200 0.025

—~400
z[ml 0.015

-600|

-800

800

00 600 500 1000 1500 2000 2500 500 1000 1500 2000 2500
y [km] y [km] y [km]

Figure 4.6: Isopycnal streamfunction transformed to depth coordinates via the mean height
of isopycnals (Nurser and Lee, 2004a) for the NL case (a), flat case (b) and hill
case (c¢). The contour interval is 0.5Sv and zero lines are thick. Below are shown
the corresponding mean isopycnals (i.e. the isopycnally averaged buoyancy
distributions), where in the NL case (d) the contour interval is 0.002m/s?
while in the flat case (e) and the hill case (f) the contour interval is 0.001m /s
In all three cases the 0.007m/s? line is thick.

4.5.3 U* in model experiments computed from an isopycnal

framework

For completeness we show in Fig. 4.6 the isopycnal streamfunction of the NL case (a),
flat case (b) and hill case (c), and the corresponding mean isopycnals, which largely have
been discussed in Nurser and Lee (2004a) and Viebahn and Eden (2012). Comparing
Fig. 4.6 a) with Fig. 4.1 d-f) we again find that the interior circulation is significantly
improved by the incorporation of the second and third order terms, while in the upper
200m convergence is far from being reached. In the flat case, comparing Fig. 4.6 b) and
Fig. 4.2 d-f), the problems are slightly more severe, since also, beside the surface layer, in
the northern convective region, the southern boundary and the bottom boundary layer in
the SO convergence is far from being reached. Finally, the worst scenario we find in the
hill case (compare Fig. 4.6 ¢) with Fig. 4.3 d-f)), where even the interior circulation of the

SO becomes completely unphysical by including next higher order terms.
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4.6 Summary and discussion

In this study we have considered the series expansion of the residual-mean eddy stream-
function ¥* and the Taylor expansion of the quasi-Stokes streamfunction ¥* up to third
order in buoyancy perturbation &’. Beside a formal comparison, we analysed the result-
ing MOCs at each order in three different eddy-permitting numerical model experiments,
namely the NL case experiment, which is largely a reproduction of the idealised zonal
channel model setup considered by Nurser and Lee (2004a,b), and the flat case and hill
case experiments of the idealised SO model setup introduced by Viebahn and Eden (2010,
2012).

Formally, the series expansions of ©¥* and U* increasingly differ from each other with
increasing order. While the first order terms are identical, the difference between the
second order terms is related to the time-zonal-mean meridional velocity v. Since v is
generally small in a zonal channel, the second order difference may be expected to be small
there as well. The third order difference is constituted by a corresponding term related to v
and an additional term, which is related to v" and, hence, is of fourth order in perturbation
quantities b" and v’. For orders higher than three we expect the emergence of further types
of terms related to v'. Regarding a zonal channel, it is likely that the terms related to v’
primarily need to be considered in order to distinguish between ¢* and ¥*.

This expectation is confirmed in each of our three model experiments, where the third
order difference term related to v’ shows the largest magnitudes. Hence, at least initially
and in regions of significant values, the magnitudes of the differences between 1* and ¥U*
tend to increase with higher order. Significant differences between the terms of the series
expansion of ¥* and the Taylor series of * are present in the diabatic boundary regions
in the NL case and the flat case, while in the hill case differences are also found in the
ocean interior (around hill depth and above'?). In the NL case and the flat case, this is in
accordance with the expectation that both streamfunctions largely coincide in the nearly
adiabatic interior, since the corresponding mean buoyancy distributions largely coincide
there (Nurser and Lee, 2004a; Viebahn and Eden, 2012). Finally, we find that the terms of
U* generally tend to have smaller magnitudes than the corresponding terms of ¥*, which
might indicate that the series expansion of ¥* converges faster than that of ¢*.

However, despite significant differences in certain regions, the series expansion of *

and the Taylor series of U*, considered up to the third order in our model experiments,

12 That is, differences primarily appear in the regions where both series expansions are initially increasing
- see two paragraphs further down.
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show the same behaviour in several aspects: Both series expansions generally tend to be
of alternating character, such that the next higher order always compensates a part of
the previous order. Furthermore, in the NL case and the flat case, both series expansions
may be adequately approximated by low order terms in the ocean interior, since there
they appear to be decreasing with higher order. Nevertheless, including terms up to the
third order still significantly improves the interior circulations in these two cases, in the
sense that they further approach the corresponding circulation patterns of the isopycnal
streamfunction and that streamlines become more aligned along the mean isopycnals in
the ocean interior. For the flat case, we showed that the impact of the next higher order
terms in the ocean interior may be reduced by the introduction of a harmonic viscosity Ay,

which acts to damp EKE and also changes the strength and depth of the circulation cells.

In contrast, in the typically diabatic boundary regions, i.e. the surface boundary layer
in the NL case and the surface and bottom boundary layers as well as the northern con-
vective region in the flat case, both series expansions are alternating and increasing, which
rules an adequate approximation by low order terms out, as previously discussed by Kill-
worth (2001); McDougall and McIntosh (2001); Nurser and Lee (2004b). This intractable
behaviour becomes more pronounced and severe in the hill case. There, physically in-
consistent recirculation cells appear around the hill depth in the first order MOC, which
are not effectively reduced by the inclusion of next higher order terms. On the contrary,
the magnitude of the next higher order terms now even is increasing in the ocean interior
(around hill depth and above topography around 500m depth), which further intensifies
the recirculation cells and complicates the circulation patterns. This drawback of initially
increasing series expansions does not disappear, if a harmonic viscosity Aj, is introduced
in the hill case. Consequently, an approximation of the ocean interior circulation by low

order terms seems not to be possible in the hill case.

The increasing behaviour of both series expansions in certain regions of the ocean is the
handicap which precludes a satisfying approximation of )* or U* by low order terms. As
an indicator of whether the series expansion of ¢* is initially increasing or decreasing, we
proposed the series number S, i.e. a dimensionless ratio relating the buoyancy perturbation
with the mean isopycnal curvature scale. We find that in the diabatic boundary regions
and at topographic depths, S represents a successful measure in our model experiments of
whether the series expansion of ¢* is initially increasing or not, while in the nearly adiabatic
interior above topography, S' is of reduced evidence. Since the increasing behaviour of the

series expansion of W* is similar to the one of ¥* in our model experiments, S applies in
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the same way to U*.

Consequently, in our model experiment which is equipped with a significant topographic
feature and which hence represents the most realistic model setup, the approximations of
the zonal-mean streamfunctions ¥* and ¥* are most inappropriate. In order to interpret
this problematic behaviour in the ocean interior in the hill case, we distinguish two regions,
namely, on the one hand, the region around the hill depth and below, and, on the other
hand, the interior region above topography. We interpret the problematic behaviour of the
low order terms of )* and ¥* in the former region as a zonally integrated boundary layer
effect. As demonstrated in the NL case (section 4.4.1) and the flat case (section 4.4.2)
and discussed in several previous studies (Killworth, 2001; McDougall and McIntosh, 2001;
Nurser and Lee, 2004b), the approximations of * and ¥* typically break down in the
horizontal boundary layers, which are generally characterised by diabatic processes and
a vertically non-monotonic buoyancy field. While in the flat case these regions (surface,
bottom) remain at fixed depth in the zonal dimension, the bottom boundary layer extends
zonally over the hill-like topography in the hill case. More precisely, in the hill case we
find significant values of the vertical diffusivity (not shown) indicating a small bottom
boundary layer all along the bottom, but most pronounced at the hill depth. Hence, in the
hill case, bottom boundary layer regions and interior parts are mixed up at topographic
depths in the zonal integration carried out at fixed depth and along latitude circles. This
mixture of boundary and interior regions precludes appropriate approximations of ¢* and

U* at topographic depths in a zonal-mean framework.

The second region of significant and increasing contributions in the lower order terms
Vi Vi, - and Wi, Wi, ... is found above topography and centered around y = 900km.
We do not relate the pure appearance of these contributions to the presence of topography,
since they are also found, although weaker, in the flat case, even if the EKE is reduced
by the introduction of A; (see Fig. 4.2). But we ascribe the increasing behaviour of
these contributions to the impact of topography on the zonal structure of the velocity and
buoyancy fields: Typically, undulations emerge horizontally in the physical fields as an
effect of topography (so-called standing eddies, Viebahn and Eden (2012)). In a zonal-
mean framework of zonal integration along latitude circles, these undulations induce the
amplification of the significant contributions above topography. However, the effect of
standing eddies on the eddy streamfunctions vanishes, if the zonal integration paths are
redefined so that the topographic influence is taken into account, or, more precisely, if the

zonal integration is performed along time-mean isolines of buoyancy (which coincide with
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latitude circles in the flat case), as discussed by Viebahn and Eden (2012). If the zonal
integration paths are defined this way, the zonal-mean eddy circulations of the flat case
and the hill case are more similar to each other. Hence, we expect that in a framework
of zonal integration along time-mean isolines of buoyancy, an approximation of * and U*
in the interior above topography would be possible again, just like in the flat case. In
other words, we interpret the increasing behaviour above topography in the hill case not
as a boundary layer effect in the zonal average, but as a topographic effect which might
be circumvented by the appropriate choice of zonal integration paths. Moreover, also at
topographic depths a reduction of the impact of the lower order terms might result from
an appropriate redefinition of the zonal integration paths, but probably an effect of the

boundary layer presence in the zonal average is inevitable.

4.7 Appendix

4.7.1 Outline of the residual-mean framework

The time-zonal-mean residual streamfunction ¢,..s(y, z) is defined as the meridional stream-
function which advects the Eulerian time-zonal-mean buoyancy b. The time-zonal-mean

buoyancy budget under steady state conditions is given by
00,b + w,b + L (9, (Lv'V) + 0, (Lw'l)) =Q (4.13)

where we used the decompositions'® b=b+V, v =7+ v and w = W + w'. The advection
due to the time-zonal-mean velocity (v,w) is described by the time-zonal-mean Eulerian

streamfunction A,
O.N=—L,v, oA = L, . (4.14)

The eddy buoyancy flux Fj, = L, (v'b, w'V/) may be decomposed into an additional advec-
tive part'* —1*Vb (directed along the time-zonal-mean isopycnals) and a diffusive part
(Andrews and hrl_ézlrltyl'e, 1976). The natural choice is to direct the diffusive part perpen-
dicular to the advective part, i.e. along the buoyancy gradient Vb (Andrews and McIntyre,

1978b). This decomposition of the eddy buoyancy flux F}, is defined only up to an arbitrary

13 In a time-zonal-mean context, each quantity ¢ generally may be decomposed into its temporal and zonal
average ¢ and its temporal and zonal deviation ¢ =q —q, i.e. =G+ ¢'.
14 The operator V is defined as V = (=9, 9,).

111
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rotational flux F, = —V#6, given by the gauge potential 6, since F;, appears in the mean

buoyancy equation (4.13) inside the divergence operator. In general, we have
F, = xVb—"Vb— V0 . (4.15)
Using Eq. (4.15), we obtain for the buoyancy budget (4.13),
VresOyb + Wres0:b = Q — L'V - (kVD) (4.16)

where the residual velocities v,.s = U — L;lazw* and Wyes = W + L;18y¢* represent the

total advection velocities of b. Hence, the residual streamfunction .., is given by
Yres = A+ 0% (4.17)
1* is the eddy streamfunction and defines the eddy-driven velocities
vt = —L'o." w* = L', (4.18)

while the flux component £Vb corresponds to a diffusive flux, and therefore the coefficient
r represents the diapycnal diffusivity induced by meso-scale eddies. Note that, since b does
not retain the volumetric properties of the unaveraged buoyancy field b, the effect of eddies
on b is inevitably both advective and diffusive (in contrast to isopycnal averaging, Nurser

and Lee (2004b)).

The time-zonal-mean buoyancy b in Eq. (4.16) is forced by the small-scale diabatic
forcing @ and the convergence of the meso-scale diffusive eddy flux —L;'V - (/@Vl_)). In
order to ensure that, if there is no instantaneous diabatic buoyancy forcing (), there is also
no diabatic effects in the mean buoyancy budget, we have to consider the rotational eddy

fuxes.

While the choice of § has no influence on the mean buoyancy equation®®, it affects the

eddy streamfunction ¥* and the diapycnal diffusivity x,

(Fy, + V0) - Vb (Fy, + V0) - Vb

f__ ) , _ l . 4.19
¥ P ST (4.19)

15 More precisely, the sum of the additional eddy advection term —V(V#-Vb/|Vb|?)-Vb and the additional
eddy diffusion term V - (V6 - Vb/|Vb|>Vb) identically vanishes.
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Further, the choice of the gauge potential 6 affects the conservation equation of eddy

variance ¢, = b'b//2, which is given by
V.-Fy=—-F,-Vb+ LVQ , (4.20)

where Fo = L, (6@ + V', Wehy + w’_gbg) represents the total variance flux, consisting of
mean and turbulent variance advection. The term Q) denotes dissipation of variance and
the term —F; - Vb = —x|Vb|? + Vo - Vb is a variance production term. The first term is
positive for £ > 0 and hence a source of variance, while the second term can have both

signs.

By considering the analog budgets of the higher order buoyancy moments, defined as
¢n = b™/n for order n, and applying decompositions of the corresponding fluxes F,, =
Ly (T +0' ¢, Wy, + W'y, ) analog to Eq. (4.15), i.e. F,, = 1, Vb—9 Vb—V6,, Eden et al.
(2007) are able to show that, if the rotational flux potentials are Spe;‘iﬁed_‘as nty, =Py,

then the turbulent diffusivity x of Eq. (4.19) is given by the series

K| Vb]? = L,bQ" — D(L.$:Q) + %DZ(LI@_Q) — %D?’(LIM) + (4.21)
where D() = V - Vb|Vb[7%(). In Eq. (4.21) & is related to covariances between the
small-scale forcing or mixing and buoyancy fluctuations. Hence, by specifying the gauge
potentials as n#,, = 1, there is no diapycnal turbulent mixing if there is no molecular
mixing. The gauge condition § = v} states that the rotational flux potential is given by the
flux of variance circulating along the contours of b (where 13 is affected by the rotational

flux potential of eddy variance 65).

Using ¢7|Vb]? = —(F,, + V6,) - Vb and the gauge condition nf,, = v, we obtain for
the eddy streamfunction *,

_ 1 1
V|V = —Jy + O Ja — éaijg + 5@2]4 — (4.22)

where 9,,() = |[Vb|~'Vb - V|Vb|7Y() and the J, = F, - Vb|Vb|~! represent the along-
isopycnal fluxes of the eddy buoyancy moments. The first ord_ér term in the expansion for ¢*
is identical to an eddy streamfunction of the transformed Eulerian mean (TEM) framework
(Andrews and Mclntyre, 1976, 1978b), i.e. the decomposition of F, with 28 = 0. The

remainder of the expansion is due to the introduction of the rotational flux potential
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given by
_ 1 9
0|Vb| = —Jp + §8WJ3 3'8mJ4 + .. (4.23)

In the ocean interior, it typically holds |9,b| < |0.b] and [@| < [7] and we obtain

Lot 1 Lypov 1 qusgv))
* ~ —_— — _—az — — a _—az s — — ... 424
v a,b 0.b (8b>+2 <8zb (c‘Lb (4.24)
g ~ Lefev 11 ( l‘d)?’“) +1 1l ( 1_aZ<L"f¢f”)) — o (4.25)
2,6 29,0 b \0.b 0.b
o' 90
po~ YO L ( *”@Q (1_02(Lx¢iQ)> — ... (4.26)
(0.b)2  (0.b)? 0.b 0.b

4.7.2 The quasi-Stokes streamfunction

We assume that the buoyancy field b(z, y, z, t) is vertically strictly monotonic in the interior
of the ocean. The instantaneous isopycnal b, lies at an instantaneous height z(z, y, by, t) =
2a(Y, ba) + 2L (2, Y, ba, t), where z, is the time-zonal-mean height of b, and 2/, is the deviation
from the time-zonal-mean, i.e. z/ = 0. The time-zonal-mean isopycnal streamfunction vy
is the temporally averaged zonal and depth integral of the velocity v, integrated below the

isopycnal b,. We may write

Za+2),

Vr(y, ba) = —Lx/ vdz | (4.27)

bottom

¢; may be transformed to Eulerian space by identifying each b, with its mean height z,.

Therewith, the quasi-Stokes streamfunction U* is defined via the decomposition

Zatz] .
- Lx/ vdz =Ny, z.) + ¥V (y, 24) » (4.28)
bottom
that is,
Zatz
U*(y, z4) = —Lx/ vdz, (4.29)
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and gives the transport of t; related to the perturbation z/. W* is the eddy-induced
streamfunction of ¢; in Eulerian space'®. Approximations of both 2’ and ¥* by Eulerian
mean quantities may be obtained by expanding b and v in Taylor series (McDougall and
MeclIntosh, 2001; Nurser and Lee, 2004b).

A vertical Taylor series of b centered at z = z, gives

1 1
ba = b(z4 + Z;) = b(24) + z(/zazb‘Z=za + §(Z;>2822b‘Z=za + 6(221)38§b‘Z=za + o

Using the decomposition b = b+ I, we obtain as terms up to third order in perturbation

quantities (denoted by a)

_ _ 1 _
b(2q + Z(Iz) = b(2a) + bl('za) + Z;azblz:zfl + Z:zazb/|z:za + _(Z;)Qazblz:za +

2
1 1 _
+§(Zzlz)283blyz:za + 6(2;)3831)]Z:Za + O(a4)

Taking the temporal and zonal average of this equation yields

_ 1 — 1 1 —
ba = b(2a) + 2,0V .=, + 5(22)2836’22% + 5(%)25’35/|z=za + 6(22)38§b|Z=za + O(a4)

The difference of both equations gives

_ - q _
- Zézazb’z:za = b/(za) + Zzlzazb/‘ZZZa — 2,0V o=z, + 5((2{1)2 - (22)2)3§b|z=za

1 l—eesr—— 1 e
320 ez, = 5GP sy + 5 ((20)° = D7) 0B, + O

From this last equation we obtain'” a series expansion of 2’ (extending the approximation
of McDougall and McIntosh (2001) about two orders),

/ -1 P -1 / -
g - i_az(ﬂ%) L aZ<Lx‘f2) + L az<b__>az(Lr¢_’2) _
05 0.5 \ob)  ab\ab ) ab \ow) "\ on

11 1 s 1L} ( 1 (Lx%)) "
o —a () ) oo —a. (=22 ) + o 4.30
20,b (@b (@b)) 2 0,b 0,b 0,b (5%) ( )

By expanding v in a vertical Taylor series, we obtain for the quasi-Stokes streamfunction

16 Tn Viebahn and Eden (2012) the corresponding decomposition is defined in an isopycnal framework.
17 Note that if the topography varies vertically, then the zonal average and the vertical derivative do not
commute due to the depth-dependent factor L.

115



4 Residual-mean eddy streamfunction and quasi-Stokes streamfunction

(4.31)

v,
. 1 1
Ut = —L, (v(za)zg + = (21)20,0] .=, + =(21)30%0|,—., + )
2 6
1 1 1 1
= Lo (V)% + 3P0, + 5 PO s, + ()0 + 5 PO o + )

where we used the decomposition v = v+ v'. Using Eq. (4.30) in Eq. (4.31), we obtain up
to third order in perturbation quantities (extending the approximation of McDougall and
MeclIntosh (2001) about one order)

U = W+ U+ U5+ O(a") (4.32)
where

U = 0 (4.33)
Ty A

v = Lzb_v B Lx@_azv (4.34)
d,b (0,0)?

U= ___az< “¢2”)+— 0 d. <L”_53) ! ( Ly 50: ”) (4.35)
9.b 9.b 2(9,0)2 ~\ 0. 2 a b o\ (0.h)2

In order to make the relation between W* and the residual-mean eddy streamfunction *
(see (4.24)) more obvious, we arrange the expansion of ¥* in orders of buoyancy pertur-
bations O’ (extending the approximation of Nurser and Lee (2004b) and of Eq. (4.32)),

U = WU, U+ 030", (4.36)
where
L.bv
g o b 4.37
e (4.37)
1 La:QSQU v Lz¢_)

vy = ——=0, = + —0, - + 4.38

II 0.0 ( 0.0 ) oY ( 0.0 Vi +Uarr ( )

oo 1L 1 Logsv\) _ 1
Vi = 282582(6258Z< o,b ) 2

- -1 i
_82( 1_8Z (Lxd_);;)) B Lx_ 0. (quég)az (va_b
b "\ 0.b 0.b 0.b 0.b 0.b

= VUi +Yarre + Yanm (4.39)
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The first research paper of this PhD thesis (chapter 2) addresses crucial questions of the
present climate change debate, namely: How does the MOC in the SO respond to decadal-
scale trends in wind stress forcing?” And: To what extent are up-to-date eddy diffusivity
parameterisations able to represent the corresponding changes in the eddy field in climate

models?

Therefore, in a first step, the results of an eddy-permitting idealised numerical model of
the SO (at 5km horizontal resolution) were used. It was found that the MOC strengthens
with increasing wind stress. The wind-driven component ¢ is increasing nearly linearly
according to the increase in wind stress, whereas the (absolute) increase of the eddy-driven
component ¥* amplifies with increasing wind stress. Consequently, the sensitivity of the
MOC on wind stress can be described by three aspects, termed as eddy compensation effect,
namely, the general behaviour of ¥* to oppose 1) such that (i) the absolute value and (i7)
the increase of the MOC are generally smaller compared to 1 and (iii) the increase of
the MOC reduces with amplifying winds. Furthermore, magnitude and depth of the MOC
are correlated. Aspect (iii) opens the possibility, that the MOC may become completely
insensitive to wind stress. However, for the considered wind stress range a state of total
compensation between 1) and 1* is not reached but the MOC is still significantly increasing
for increasing wind stress.

The corresponding eddy diffusivity K is characterised by a manifold spatial structure
and by a strong sensitivity towards changing winds: K increases with increasing wind
stress and, similar to the MOC, the increase of K (averaged at 200 m depth) diminishes
monotonically with increasing wind stress for the wind stress range under consideration.
Consequently, the sensitivity of the eddy diffusivity K to wind stress has to be distinguished
from the corresponding response of the eddy-driven component ¥*. It turns out that a
nearly constant increase of the isopycnal slopes s, though quantitatively much smaller
than the increase of the eddy diffusivity K, is relevant in order to capture the correct

sensitivity to wind stress of 1*.
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In a second step, the Gent and McWilliams (1990) parameterisation was implemented in
the idealised numerical model of the SO in order to assess the effect of parameterising the
meso-scale eddy field on the residual MOC of the SO. On the one hand, the eddy diffusivity
K was specified by different constant values; on the other hand, the flow-interactive meso-
scale eddy closure by Eden and Greatbatch (2008) (EG) was implemented and it was found:
The EG closure represents well the spatial structure of K and its qualitative response to
increasing wind stress which is, however, quantitatively underestimated. The latter effect
becomes even more clear for constant eddy diffusivity parameterisations, since they lack any
sensitivity by definition. Consequently, for both, the EG closure and any constant K, there
are wind stress ranges of over- or underestimation of the eddy diffusivity K. Furthermore,
the eddy diffusivity and isopycnal slopes are intimately linked in the parameterised models
as well: The underestimated response of K corresponds an overestimated response of s,
such that for all parameterisations the response of the eddy-driven MOC of the eddying
model tends to be underestimated by the parameterised eddy-driven MOCs.

The overall MOC behaves accordingly in the parameterised models: All parameterisa-
tions reproduce the MOC for a fixed wind stress qualitatively well. However, the response
of the MOC towards increasing winds is overestimated by each parameterisation, with the
EG closure being slightly more adequate than a constant K. Consequently, each param-
eterisation will always under- or overestimate the residual MOC in a certain wind stress

range.

The results of the first research paper (chapter 2) clearly demonstrate that the correct
behaviour of the eddy diffusivity in coarse-resolution climate models is essential for a
correct simulation of changes in the SO and thus a thorough assessment of climate change.
In particular, the simulation of the MOC and the related C'O, content in the SO and its
response to changing winds depends crucially on the subgrid-scale parameterisation. Up-
to-date eddy diffusivity parameterisations lead to under- or overestimations of the MOC
and the related CO5 content in the SO for different wind stresses. The results strengthen

the necessity of further improvements of meso-scale eddy diffusivity parameterisations.

The second research paper (chapter 3) and the third research paper (chapter 4) of this
PhD thesis are guided by a more conceptual perspective. They focus on the concept
of a MOC streamfunction and explore difficulties and possible optimisations of the most
prominent definitions of the MOC streamfunction: Is it possible to define a MOC stream-
function completely void of standing eddies? What are the differences between the series

expansion of the residual-mean eddy streamfunction and the series expansion of the quasi-
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Stokes streamfunction and how applicable are the approximate formulas of both in order
to diagnose the MOC?

The second research paper (chapter 3) addresses the first question. Previous studies
suggest that zonal integration should be performed along time-mean horizontal streamlines
in order to exclude standing eddies in the MOC streamfunction. However, it turns out that
time-mean horizontal streamlines represent only an approximate solution. Exact time-
mean horizontal streamlines may be used as zonal integration paths in the construction
of a zonal-mean meridional streamfunction only, in case they are closed above topography
(i.e. the horizontal velocity field is nondivergent), because otherwise mass balance is not
guaranteed. It is showed that if time-mean horizontal streamlines are both closed and
depth-independent, the time-mean of the meridional cross-streamline transport velocity
will vanish. It follows that under such conditions the entire time-mean component of the
MOC streamfunction (including the standing eddy part) exactly vanishes. However, as
demonstrated by results of the idealised numerical model of the SO, time-mean horizontal
streamlines generally are unclosed in the surface layer (due to the wind-driven Ekman
transport) and significantly change with depth. Consequently, zonal integration along
time-mean horizontal geostrophic streamlines may only lead to a reduction, but not to
an exact vanishing of the standing eddy component of the MOC streamfunction: On the
one hand, streamlines have to be approximated by the isolines of a scalar field, e.g. the
geostrophic streamfunction, such that in regions of dominant ageostrophic transports a
significant standing eddy component may appear. On the other hand, the significant
depth-dependence of the (geostrophic) streamlines induces a non-orthogonality term with
non-vanishing time-mean in the meridional cross-streamline transport velocity, which may

lead to an additional significant contribution in the standing eddy component.

However, an optimisation could be given in the second research paper (chapter 3): It
is formally showed that the construction of a zonal-mean meridional streamfunction with
an exactly vanishing standing eddy part has to be performed by zonal integration along
depth-dependent horizontal isolines of time-mean buoyancy. Isolines of time-mean buoy-
ancy are always closed above topography and hence do not conflict with mass balance and
may be used without approximation. Moreover, the vanishing of the standing eddy part
in this case relies only on the integration conditions. It is independent of the determina-
tion of the cross-path transport velocity and therefore always exactly holds - even for a
depth-dependent isolines of time-mean buoyancy, which induce a non-orthogonal curvilin-

ear coordinate system. However, the time-mean of the cross-path transport velocity and
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hence the time-zonal-mean part (the Eulerian part) of the overall MOC do not vanish in

general.

Finally, in the third research paper (chapter 4) the series expansion of the residual-mean
eddy streamfunction ¥* and the Taylor expansion of the quasi-Stokes streamfunction ¥*

are considered up to third order in buoyancy perturbation &'.

Formally, the series expansions of ©¥* and U* increasingly differ from each other with
increasing order. While the first order terms are identical, the difference between the
second order terms is related to the time-zonal-mean meridional velocity v. Since v is
generally small in a zonal channel, the second order difference may be expected to be small
there as well. The third order difference is constituted by a corresponding term related
to ¥ and an additional term, which is related to the velocity perturbation v’ and, hence,
is of fourth order in perturbation quantities b’ and v’. For orders higher than three it is
likely that further types of terms related to v' emerge. Regarding a zonal channel, it is
likely that the terms related to v" primarily need to be considered in order to distinguish
between ¢* and ¥*.

This expectation is confirmed in different idealised model experiments of the SO which
include either a flat bottom or a hill-like topographic feature. In each experiment the
third order difference term related to v’ shows the largest magnitudes. Hence, at least
initially and in regions of significant values, the magnitudes of the differences between *
and ¥* tend to increase with higher order. Significant differences between the terms of
the series expansion of 1* and the Taylor series of U* are present in the diabatic boundary
regions of the flat bottomed experiments, while in the presence of topography differences
are also found in the ocean interior (around hill depth and above). In the flat bottomed
experiments, this is in accordance with the expectation that both streamfunctions largely
coincide in the nearly adiabatic interior, since the corresponding mean buoyancy distribu-
tions largely coincide there (Nurser and Lee (2004a), see also chapter 3). Finally, it is found
that the terms of U* generally tend to have smaller magnitudes than the corresponding
terms of ¢*, which might indicate that the series expansion of U* converges faster than
that of ¥*.

However, despite significant differences in certain regions, the series expansion of ¢* and
the Taylor series of ¥*, considered up to the third order in the different idealised SO model
experiments, show the same behaviour in several aspects: Both series expansions generally
tend to be of alternating character, such that the next higher order always compensates a

part of the previous order. Furthermore, in the experiments with a flat bottom, both series
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expansions may be adequately approximated by low order terms in the ocean interior, since
there they appear to be decreasing with higher order. Nevertheless, including terms up to
the third order still significantly improves the interior circulations in the flat experiments, in
the sense that they further approach the corresponding circulation patterns of the isopycnal
streamfunction and that streamlines become more aligned along the mean isopycnals in
the ocean interior.

In contrast, in the diabatic boundary regions both series expansions are alternating and
increasing, which rules an adequate approximation by low order terms out, as previously
discussed by Killworth (2001); McDougall and McIntosh (2001); Nurser and Lee (2004b).
This intractable behaviour becomes more pronounced and severe in the experiment with
bottom topography. There, physically inconsistent recirculation cells appear around the
hill depth in the first order MOC, which are not effectively reduced by the inclusion of
next higher order terms. On the contrary, the magnitude of the next higher order terms
now even is increasing in the ocean interior (around hill depth and above topography),
which further intensifies the recirculation cells and complicates the circulation patterns.
Consequently, in the model experiment which is equipped with a significant topographic
feature and which hence represents the most realistic model setup, the approximation of
the ocean interior circulation by low order terms seems not to be possible. Therefore, the
diagnosis of the MOC from empirical data or realistic model results via approximations of
the zonal-mean streamfunctions ¥* and ¥* must be treated with care or even completely

ruled out.
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air-sea fluxes of anthropogenic carbon into the Southern Ocean occur farther

south than maximum column inventories. Note that the column inventories

are in good agreement with empirical estimates e.g. by Sabine et al. (2004).

Seasonal values of the SAM index calculated from station data (updated
by the IPCC (2007) from Marshall (2003)). The smooth black curve shows
decadal variations. Enhanced SO westerlies occur in the positive phase of
the SAM. . . . . .

Schematic representation of the MOC of the SO. Further details are given
in the text. Redrawn from Olbers and Visbeck (2005). . . . .. ... ...
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Left: target buoyancy b*/Ab for the surface restoring boundary condition
and different wind forcings T,;/7 imposed in the idealised ACC model.
Middle: zonal velocity at the surface from the idealised ACC model for
7 = 0.5 x 107*m?s™2 (contour interval is 0.15ms~!). Right: maxima of
the residual streamfunction ,.s [Sv] at 200m depth in the ACC part for
a l-year-mean (green), 5-year-mean (blue), and a 15-year mean (thick red)
for increasing wind stresses 7 = 1 x 107*m?s72, 5 = 1.5 x 10™*m?s72, and

Ts = 2.5 X 107™4m2s™2. . .

Zonal and time mean (upper left) Eulerian (¢), (upper right) eddy (¢*) and
(lower left) residual streamfunction (¢,.5) from the idealised ACC model for
71 = 0.5 x 107*m?s72. Contour interval is 0.2 Sv in each case and zero lines
are thick. Also shown is the zonal and time mean buoyancy distribution

with a contour interval of 0.001m/s* and a thick 0.007m/s? line. . . . . . .

Zonal and time mean (upper) residual streamfunctions (¢,.s) and (lower)

buoyancy distributions (b) from the eddy-permitting idealised ACC model
for wind stress amplitudes (from left to right) 7, = 0.5 x 107*m?s™2 7, =
1 x 107*m?s72 and 73 = 1.5 x 10~*m?s~2. The contour intervals are (upper)
0.2Sv and (lower) 0.001 m/s?. Thick lines are (upper) zero lines and (lower)

0.007 m/s® lines. . . . . ..

Left: maximal transport values [Sv] of the residual streamfunction ,.,, the
Eulerian streamfunction ¢ and —7/f at —150m depth between the southern
s+—o (around y = 1100km) for the eddy-permitting ACC
model configuration with different horizontal resolutions. Thick red: .., for
ARy, magenta dashed: 1, for ARy, magenta dash-dot: ,.., for ARj3, thin
red: 1 for ARy, blue dashed: 1 for AR,, blue dash-dot: v for ARj, thin
black: —7/f. Black dots denote data points. Right: the corresponding mean

boundary and y

eddy diffusivities K [10°m?/s] and isopycnal slopes 5 [~107%]. Averages are
taken at —200m depth and between 110km and 910km. . . . . . . . . ..
Zonal and time mean eddy diffusivity K [m?/s] for three different wind stress
amplitudes (from left to right) 71 = 0.5 x 107*m?s™2, 75 = 1 x 10 *m?s™2
and 73 = 1.5 x 107*m?s~2 from (upper) the eddy-permitting idealised model
and the parameterised idealised ACC model using the closure of Eden and
Greatbatch (2008), given by (2.12), with (middle) ¢ = 4 and (lower) ¢ = 2.

The contour intervals are 250m?/s and the 2500m?/s line is thick. . . . . .
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Zonal and time mean (upper) residual streamfunctions (¢,.5), (middle) buoy-
ancy distributions (b) and (lower) eddy diffusivities (K) from the idealised
ACC model for 7, = 1 x 107*m?s~? with different horizontal resolutions
(from left to right): ARy = 5km, ARy = 10km, AR; = 20km. The con-
tour intervals are (upper) 0.2Sv, (middle) 0.001 m/s? and (lower) 250m?/s.
Thick lines are (upper) zero lines, (middle) 0.007 m/s* lines and (lower)
2500m2 /s iNes. . . . .

Mean (left) eddy diffusivities K [10°m?/s] and (middle, right) isopycnal
slopes 5 [—1073] for the different idealised ACC model configurations. Av-
erages are taken at —200m depth and between 110km and 910km. Red:
eddy-permitting reference case ARy, blue thick: Kgg1, blue dashed: Kggo,
blue dash-dot: Kggsz, blue thin: Kpgqy, blue dotted: Kggs, black thick:
K100, black dashed: Ksggg, black dash-dot: Kj3gg9, black thin: K40, black
dotted: Ksppo. Left black dotted lines denote the corresponding constant
eddy diffusivities. . . . . . . . ...

Zonal and time mean residual streamfunctions (,s) from the idealised ACC

model for 7 = 1 x 107*m?s™2 and different model configurations: Kpq
(upper left), Kpgs (upper right), Kipoo (lower left), K3op0 (lower right). The

contour intervals are 0.25v and zero lines are thick. . . . . . . . . . .. ..

Percentages of the transport values of (left) the residual streamfunction
Yres and (right) the eddy streamfunction 7, = Ks at 150m depth and
y = 970km, from the parameterised idealised ACC model using (blue) the
closure of Eden and Greatbatch (2008), given by (2.12), and (magenta)
using constant eddy diffusivities. Values are taken relative to the eddy-
permitting reference setup AR; (red line). Blue thick: Kggi, blue dashed:
KEggo, blue dash-dot: Kggs, blue thin: Kggy, blue dotted: Kggs, magenta
thick: Kjpoo, magenta dashed: Kspg9, magenta dash-dot: Kjsggg, magenta

thin: K400, magenta dotted: Kspoo. - - - - - v v v o o v o oo
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2.11 Zonal and time mean residual streamfunctions (¢,.s) from (upper) the eddy-

3.1

3.2

3.3

3.4

3.5

permitting idealised ACC model for case ARz and from the application
of equation (2.16) with (middle) an eddy diffusivity diagnosed from the
eddy-permitting model and (lower) prescribing a fixed eddy diffusivity of
1000m?/s. The wind stress amplitudes are (left) 71 = 0.5 x 107*m?s72
(right) 75 = 1 x 107*m?s™2 and in between 7 = 0.75 x 107*m?s™2. The

contour intervals are 0.2Sv and zero lines are thick. . . . . . . . . . . ..

Top: Time-mean Eulerian meridional streamfunction (A) with a contour
interval of 1 Sv and thick zero lines for the flat (a) and the hill (b) case.
Bottom: Eulerian zonal- and time-mean buoyancy distribution ([b]) with a
contour interval of 0.001m/s? and a thick 0.007m/s* line for the flat (c) and
the hill (d) case. . . . . . . . .

The isopycnal streamfunction (1;) in (top) isopycnal coordinates and (bot-
tom) transformed to depth coordinates via the mean height of isopycnals
(Nurser and Lee, 2004a) for the flat (a,c) and the hill (b,c) case. The con-

tour interval is 0.5 Sv and zero lines are thick. . . . . . . . . . . . . .. ..

The difference (multiplied by 10%) between the time-mean of the isopycnally

averaged buoyancy and [b] (shown in Fig. 3.1) for the flat (a) and the hill

(b) case. The contour interval is 0.2m/s? and zero lines are thick. . . . . .

Top: The standing eddy streamfunction (¢/%) for the flat (a) and the hill (b)
case. Bottom: The transient eddy streamfunction (%) for the flat (c) and
the hill (d) case. The contour interval is 0.5 Sv and zero lines are thick.
They were transformed to depth coordinates via the mean height of the

respective isopycnals (Nurser and Lee, 2004a). . . . . . .. ... ... ...

Time-mean horizontal streamlines in the SO region for (top) the flat case at
z = —2bm (a), z = —7bm (b), z = —1875m (c) and (bottom) the hill case
at z = —2bm (d), z = —75m (e), z = —825m (f). In each case streamlines
with a starting point at x = 0 and y = 290km, 610km, 970km are black and
thick. . . . o e
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Top: Time-mean geostrophic streamfunction p/ fo [10° m?/s] of the hill case
at z = —25m with a contour interval of 5 x 10 m?/s (a), 2 = —975m with
a contour interval of 1 x 10° m?/s (b) and z = —1525m with a contour
interval of 5 x 102> m?/s (c). Bottom: Time-mean buoyancy b [1073 m/s?]
of the hill case at z = —25m with a contour interval of 1 x 1072 m/s? (d),
z = —975m with a contour interval of 2 x 1072 m/s? (e) and z = —1525m

with a contour interval of 2 x 107 m/s* (f). . ... ... ... ... ...

Standing eddy streamfunctions 1&7 for zonal integration along time-mean
geostrophic streamlines (a-c) and isolines of time-mean buoyancy b (d-f).
Eulerian streamfunctions A; for zonal integration along time-mean geostrophic
streamlines (g-i) and isolines of time-mean buoyancy b (j-1). From left
to right the contour-depths are given by z = —25m, z = —475m and
2= —=920m. ...

Isopycnal streamfunctions v, for zonal integration along time-mean geostrophic

streamlines (a-c) and isolines of time-mean buoyancy b (d-f). Transient
eddy streamfunctions 12}5 for zonal integration along time-mean geostrophic
streamlines (g-i) and isolines of time-mean buoyancy b (j-1). From left
to right the contour-depths are given by z = —25m, z = —475m and
2= —=920m. ...

The difference (multiplied by 10%) between the time-mean of the isopyc-
nally and along time-mean contours averaged buoyancy distribution and
the isopycnally and along latitude circles averaged buoyancy distribution.
Contours are either time-mean geostrophic streamlines (a-c) or isolines of
time-mean buoyancy (d-f). From left to right the contour-depths are given
by z = —25m, z = —475m and z = —925m. The contour interval (of the

plots) is 0.2m/s* and zero lines are thick. . . . .. .. ... ... ... ..

*  —

The first three terms of the series expansion of ¢* for the NL case: ¢} =
—J1/|IVb] (a), ¥} = O J2/| VD] (b), ¥j; = —102,J5/|Vb] (c) and the corre-
sponding residual streamfunctions including terms of ¢* up to the first (d),
second (e), third (f) order. The contour interval is 0.5Sv and zero lines are
thick. . . . o e
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The first three terms of the series expansion of ¢* for the flat case: ¥} (a),
Y5, (b), 5, (¢) and the corresponding residual streamfunctions including
terms of ¢* up to the first (d), second (e), third (f) order. (g-i) and (j-1) show
the same quantities, but for the flat case experiment including a harmonic
viscosity of A = 2000m?s 1.
are thick. . . . . . .

The first three terms of the series expansion of ¢* for the hill case: ¥} (a),

The contour interval is 0.5Sv and zero lines

Y5, (b), ¥5;; (¢) and the corresponding residual streamfunctions including
terms of 1* up to the first (d), second (e), third (f) order. The contour
interval is 0.5Sv and zero lines are thick. . . . .. ... ... ... .. ...
Series number S for the NL case (a), the flat case (b) and the hill case (c).
Contour lines are 0.1, 0.2, 04 and 1. . . . . ... .. .. ... ... ....
VA Uarrre and ¥R, for the NL case (a-c), the flat case (d-f) and the hill
case (g-1). The contour interval is 0.5Sv and zero lines are thick. . . . . .
Isopycnal streamfunction transformed to depth coordinates via the mean
height of isopycnals (Nurser and Lee, 2004a) for the NL case (a), flat case
(b) and hill case (¢). The contour interval is 0.5Sv and zero lines are thick.
Below are shown the corresponding mean isopycnals (i.e. the isopycnally
averaged buoyancy distributions), where in the NL case (d) the contour
interval is 0.002m/s?, while in the flat case (e) and the hill case (f) the

contour interval is 0.001m/s?. In all three cases the 0.007m/s? line is thick.
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