GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 115 (D12). D12113.
    Publication Date: 2018-02-06
    Description: The multidecadal variability of air-sea CO(2)fluxes in the North Atlantic under preindustrial atmospheric CO(2) conditions is simulated, using a coupled biogeochemical/circulation model driven by long-term surface forcing reconstructed from the leading modes of sea level pressure observations from 1850 to 2000. Heat fluxes are of great importance for the multidecadal CO(2) fluctuations, about equal in magnitude to wind stress, in contrast to their less prominent role for CO(2) flux variability on interannual timescales. Another difference, compared to higher frequencies, is the dominance of the North Atlantic Oscillation in driving the variability of the air-sea CO(2) fluxes. Two spatially distinct regimes lead to large anomalies in the CO(2) fluxes but compensate to a large degree. The first regime is advective and has its clear signature southeast of Greenland while the second one, in the vicinity of the Labrador Sea and off Newfoundland, is convective. In both regimes, the multidecadal CO(2) fluctuations are driven mainly by variations in temperature, salinity, and DIC content at the sea surface while the role of the biological pump is of minor importance in this particular model. The magnitude of the simulated multidecadal CO(2) uptake changes is on the order of 0.02 Pg C/yr and amounts to 10-15% of the estimated annual anthropogenic CO(2) uptake of the North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 (C6).
    Publication Date: 2018-01-15
    Description: On the basis of integrations of an eddy-permitting coupled physical-biological model of the tropical Pacific we explore changes in the simulated mean circulation as well as its intraseasonal to interannual variability driven by the biologically modulated vertical absorption profiles of solar radiation. Three sensitivity ocean hind-cast experiments, covering the period from 1948 to 2003, are performed. In the first one, simulated chlorophyll affects the attenuation of light in the water column, while in the second experiment, the chlorophyll concentration is kept constant in time by prescribing an empirically derived spatial pattern. The third experiment uses a spatially and temporally constant value for the attenuation depth. The biotically induced differential heating is generated by increased absorption of light in the surface layers, leading to a surface warming and subsurface cooling. The effect is largest in the eastern equatorial Pacific. However, the initial vertical redistribution of heat leads to considerable changes of the near-surface ocean circulation subsequently influencing the near-surface temperature structure. In general, including biophysical coupling improves the model performance in terms of temperature and ocean circulation patterns. In particular, the upwelling in the eastern equatorial Pacific is enhanced, the mixed layer becomes shallower, the warm bias in the eastern Pacific is reduced, and the zonal temperature gradient increases. This leads to stronger La Niña events and an associated increase in the variability of the Niño3 SSTA time series. Furthermore, the eddy kinetic energy (EKE) associated with mesoscale eddies in the eastern equatorial Pacific increases by almost 100% because of enhanced EKE production due to enhanced horizontal and vertical shear of the mean currents.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 111 (C12). C12025.
    Publication Date: 2018-04-19
    Description: Observational estimates of middepth tracer tongues in the equatorial Atlantic are reviewed and are compared with results from several eddy-resolving model simulations. Local maxima of chlorofluorocarbon (CFC) concentrations along the equator at around 1500 m depth are related to mean eastward jet structures in the models at similar depth ranges and can also be identified in several simulated tracer distributions. Similar to the observations, strong eastward jets are located in the simulations 1°–2° north and south of the equator. The model simulations show, in addition, consistent with the CFC observations, weaker jets at around 4°–6°N/S and 8°–10°N/S, suggestive of a large-scale alternating eastward/westward current system in the western tropical Atlantic in this depth range. Lagrangian transport estimates in the model using float diagnostics show a transport of 1–3 Sv in each of the eastward jets 1°–2°N/S off the equator compared to 3–12 Sv throughflow into the South Atlantic, with no seasonal cycle apparent in the transport fractioning. Comparing different model solutions reveals the choice of the subgrid-scale mixing parameterization as important for the amplitudes of the jets. Enhanced (reduced) diapycnal mixing is related to stronger (weaker) jets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-19
    Description: A coupled ecosystem-circulation model of the North Atlantic is used to examine the individual contributions by wind stress and surface heat fluxes to naturally driven interannual-to-decadal variability of air-sea fluxes of CO2 and O2 during 1948–2002. The model results indicate that variations in O2 fluxes are mainly driven by variations in surface heat fluxes in the extratropics (15°N to 70°N), and by wind stress in the tropics (10°S to 15°N). Conversely, variations in simulated CO2 fluxes are predominantly wind-stress driven over the entire model domain (18°S to 70°N); while variability in piston velocity and surface heat fluxes is less important. The simulated uptake of O2 by the North Atlantic amounts to 70 ± 11 Tmol yr−1 to which the subpolar region (45°N to 70°N) contributes by 62 ± 10 Tmol yr−1. Whereas the subpolar North Atlantic takes up more than 2/3 of the total carbon absorbed by the North Atlantic in our model (about 0.3 Pg C yr−1), interannual variability of air-sea CO2 fluxes reaches similar values (about 0.01 Pg C yr−1 each) in the subpolar (45°N to 70°N), the subtropical (15°N to 45°N) and the equatorial (10°S to 15°N) Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 20 (GB2008).
    Publication Date: 2018-03-22
    Description: Physical transport processes of carbon, alkalinity, heat, and nutrients to a large extent control the partial pressure of CO2 at the sea surface and hence the oceanic carbon uptake. Using a state-of-the-art biogeochemical model of the North Atlantic at eddy-permitting resolution we show that biases in the simulated circulation generate errors in air-sea fluxes of CO2 which are still larger than those associated with the considerable uncertainties in parameterizations of the air-sea gas exchange. A semiprognostic correction method that adiabatically corrects the momentum equations while conserving water mass properties and tracers is shown to yield a more realistic description of the carbon fluxes into the North Atlantic at little additional computational cost. Owing to upper ocean flow patterns in better agreement with observations, simulated CO2 uptake in the corrected regional model is larger by 25% compared to the uncorrected model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C04003.
    Publication Date: 2019-09-23
    Description: Middepth current measurements in the equatorial Atlantic are characterized by elevated levels of energy contained in zonal flows of high baroclinic mode number. These alternating zonal flows, often called equatorial stacked jets, have amplitudes up to 20 cm s−1 and vertical wavelengths of 600 m. The jets are most pronounced in the depth range between 500 and 2500 m. Repeated direct velocity observations at 35°W indicate that the jets are coherent within ±1° of the equator. Individual jets can persist for 1–2 years, but they appear and decay rather irregularly. The equatorial stacked jets are also found in realistic general circulation model simulations. The features grow in amplitude with increasing horizontal and vertical model resolution. However, even at very high model resolutions, their amplitudes are still underestimated. In all model simulations, high levels of energy related to the stacked jets are found in the vicinity of the western boundary currents (WBCs). Depth range and strength of the WBCs in different experiments are related to depth range and strength of the jets. In the interior, stacked jets are characterized by eastward wave propagation suggesting that high baroclinic mode Kelvin waves radiate energy generated in the WBC into the interior and form the stacked jets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L09602.
    Publication Date: 2018-03-28
    Description: Changes of the meridional overturning circulation (MOC) due to surface heat flux variability related to the North Atlantic Oscillation (NAO) are analyzed in various ocean models, i.e., eddying and non‐eddying cases. A prime signature of the forcing is variability of the winter‐time convection in the Labrador Sea. The associated changes in the strength of the MOC near the subpolar front (45°N) are closely related to the NAO‐index, leading MOC anomalies by about 2–3 years in both the eddying and non‐eddying simulation. Further south the speed of the meridional signal propagation depends on model resolution. With lower resolution (non‐eddying case, 4/3° resolution) the MOC signal propagates equatorward with a mean speed of about 0.6 cm/s, similar as spreading rates of passive tracer anomalies. Eddy‐permitting experiments (1/3°) show a significantly faster propagation, with speeds corresponding to boundary waves, thus leading to an almost in‐phase variation of the MOC transport over the subtropical to subpolar North Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 31 . L15308.
    Publication Date: 2018-03-21
    Description: The Galápagos Islands provide a topographic barrier for the Southern Equatorial Current (SEC) and the Equatorial Undercurrent (EUC). An island wake effect can be diagnosed from the difference of an ocean general circulation model simulation which includes the Galápagos Islands and one which ignores their presence. Cold thermocline water upwells on the western side of the islands, and only during boreal winter season these cold waters can linger around the Islands at a depth of about 80 m and affect the far eastern equatorial Pacific surface waters. This effect is partly offset by the westward transport of cold surface waters by the SEC which creates a wake on the western side of the Islands. It is furthermore shown that changes in horizontal current shear, induced by the presence of the Galápagos Islands modify the generation of tropical instability waves and lead to a basin scale SST anomaly pattern.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C8). C08026.
    Publication Date: 2018-01-18
    Description: Using a global ocean model with regionally focused high resolution (1/10°) in the East China Sea (ECS), we studied the oceanic heat budget in the ECS. The modeled sea surface height variability and eddy kinetic energy are consistent with those derived from satellite altimetry. Significant levels of eddy kinetic energy are found east of the Ryukyu Islands and east of Taiwan, where the short-term variability is spawned by active mesoscale eddies coalescing with the circulation. Furthermore, the simulated vertical cross-stream structure of the Kuroshio (along the Pollution Nagasaki line) and the volume transport through each channel in the ECS are in good agreement with the observational estimates. The time-averaged temperature fluxes across the Taiwan Strait (TWS), Tsushima Strait (TSS), and the 200 m isobath between Taiwan and Japan are 0.20 PW, 0.21 PW, and 0.05 PW, respectively. The residual heat flux of 0.04 PW into the ECS is balanced by the surface heat loss. The eddy temperature flux across the 200 m isobath is 0.005 PW, which accounts for 11.2% of the total temperature flux. The Kuroshio onshore temperature flux has two major sources: the Kuroshio intrusion northeast of Taiwan and southwest of Kyushu. The Ekman temperature flux induced by the wind stress in the ECS shows the same seasonal cycle and amplitude as the onshore temperature flux, with a maximum in autumn and a minimum in summer. We conclude that the Ekman temperature flux dominates the seasonal cycle of Kuroshio onshore flux.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 114 . C05023.
    Publication Date: 2019-09-23
    Description: Accounting for ocean currents in the bulk parameterization of the wind stress might represent a physically more plausible way to force an ocean model than ignoring their effect. We show in this study that using the air-sea velocity difference instead of the atmospheric wind in the wind stress formulation dampens both the near-surface eddy activity and the biotic carbon assimilation in a high-resolution model of the North Atlantic. The former is significant, corresponding to a reduction down to 50% in the tropical Atlantic, while in higher latitudes (in agreement with previous results) the reduction of eddy activity is only around 10%. The effect on biotically mediated new production and air-sea carbon fluxes is, on the other hand, minor. New production is reduced by less than 5% on a basin average, while simulated air-sea CO2 fluxes are barely affected at all. The model results imply that eddy/wind interaction introduced by accounting for ocean currents in the wind stress formulation does not drive any additional (and hitherto unaccounted) nutrient fluxes to the sunlit surface of the subtropical gyre, as was recently proposed in the literature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...