GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Language
Years
  • 1
    In: Journal of geophysical research. C, Oceans, Hoboken, NJ : Wiley, 1978, 113(2008), 2169-9291
    In: volume:113
    In: year:2008
    In: extent:12
    Description / Table of Contents: The spatial and temporal distributions of tropical instability waves (TIWs) in the Atlantic Ocean are investigated using a combination of current observations with moored instruments deployed at the equator at 23°W and a realistic eddy-resolving (1/12ʿ) general circulation model of the Atlantic Ocean. The meridional and vertical shears of the zonal current system contribute to the eddy production rates and thus to the generation of TIWs in the central tropical Atlantic Ocean. In the Southern Hemisphere, TIWs are forced only by baroclinic instability associated with the vertical shear of the central part of the South Equatorial Current (SEC). In the Northern Hemisphere, baroclinic instability due to the vertical shear of the northern SEC (nSEC) as well as barotropic instabilities due to horizontal shears of the Equatorial Undercurrent (EUC)/nSEC and nSEC/North Equatorial Countercurrent (NECC) contribute to the generation of the TIWs. Since seasonal changes of the instability production rates related to the EUC/nSEC are comparable low while the rates related to the nSEC/NECC are high, we suggest that the seasonality of the NECC dominates the seasonal modulation of the TIWs.
    Type of Medium: Online Resource
    Pages: 12 , graph. Darst
    ISSN: 2169-9291
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 113 . C08034.
    Publication Date: 2019-09-23
    Description: The spatial and temporal distributions of tropical instability waves (TIWs) in the Atlantic Ocean are investigated using a combination of current observations with moored instruments deployed at the equator at 23°W and a realistic eddy-resolving (1/12°) general circulation model of the Atlantic Ocean. The meridional and vertical shears of the zonal current system contribute to the eddy production rates and thus to the generation of TIWs in the central tropical Atlantic Ocean. In the Southern Hemisphere, TIWs are forced only by baroclinic instability associated with the vertical shear of the central part of the South Equatorial Current (SEC). In the Northern Hemisphere, baroclinic instability due to the vertical shear of the northern SEC (nSEC) as well as barotropic instabilities due to horizontal shears of the Equatorial Undercurrent (EUC)/nSEC and nSEC/North Equatorial Countercurrent (NECC) contribute to the generation of the TIWs. Since seasonal changes of the instability production rates related to the EUC/nSEC are comparable low while the rates related to the nSEC/NECC are high, we suggest that the seasonality of the NECC dominates the seasonal modulation of the TIWs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...