GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-27
    Description: A new climate model has been developed that employs a multi-resolution dynamical core for the sea ice-ocean component. In principle, the multi-resolution approach allows one to use enhanced horizontal resolution in dynamically active regions while keeping a coarse-resolution setup otherwise. The coupled model consists of the atmospheric model ECHAM6 and the finite element sea ice-ocean model (FESOM). In this study only moderate refinement of the unstructured ocean grid is applied and the resolution varies from about 25 km in the northern North Atlantic and in the tropics to about 150 km in parts of the open ocean; the results serve as a benchmark upon which future versions that exploit the potential of variable resolution can be built. Details of the formulation of the model are given and its performance in simulating observed aspects of the mean climate is described. Overall, it is found that ECHAM6–FESOM realistically simulates many aspects of the observed climate. More specifically it is found that ECHAM6–FESOM performs at least as well as some of the most sophisticated climate models participating in the fifth phase of the Coupled Model Intercomparison Project. ECHAM6–FESOM shares substantial shortcomings with other climate models when it comes to simulating the North Atlantic circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-04
    Description: We present a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. For the first time, an iceberg model is initialized with a set of nearly 7000 observed iceberg positions and sizes around Antarctica. The study highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. We simulate drift and lateral melt using iceberg-draft averaged ocean currents, temperature, and salinity. A new basal melting scheme, originally applied in ice shelf melting studies, uses in situ temperature, salinity, and relative velocities at an iceberg's bottom. Climatology estimates of Antarctic iceberg melting based on simulations of small (≤ 2.2 km), 'small-to-medium'-sized (≤ 10 km), and small-to-giant icebergs (including icebergs 〉 10 km) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of the iceberg meltwater flux and a shift of the mass input to the area north of 58 °S, while less meltwater is released into the coastal areas. This suggests that estimates of meltwater input solely based on the simulation of small icebergs introduce a systematic meridional bias; they underestimate the northward mass transport and are, thus, closer to the rather crude treatment of iceberg melting as coastal runoff in models without an interactive iceberg model. Future ocean simulations will benefit from the improved meridional distribution of iceberg melt, especially in climate change scenarios where the impact of iceberg melt is likely to increase due to increased calving from the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-12-14
    Description: The fifth Workshop on Systematic Errors (WSE) in weather and climate models was hosted by Environment and Climate Change Canada (ECCC) on under the auspices of the Working Group on Numerical Experimentation (WGNE), jointly sponsored by the Commission of Atmospheric Sciences of the World Meteorological Organization (WMO) and the World Climate Research Programme (WCRP). This major event welcomed over 200 scientists from the weather and climate communities. The workshop primary goal was to increase the understanding of the nature and cause of systematic errors in numerical models across timescales. Out of 240 abstracts submitted to the workshop, 48 talks and 132 posters were presented.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-27
    Description: It is often unclear how to optimally choose horizontal resolution for the oceanic and atmospheric components of coupled climate models, which has implications for their ability to make best use of available computational resources. Here we investigate the effect of using different combinations of horizontal resolutions in atmosphere and ocean on the simulated climate in a global coupled climate model (Alfred Wegener Institute Climate Model [AWI‐CM]). Particular attention is given to the Atlantic Meridional Overturning Circulation (AMOC). Four experiments with different combinations of relatively high and low resolutions in the ocean and atmosphere are conducted. We show that increases in atmospheric and oceanic resolution have clear impacts on the simulated AMOC, which are largely independent. Increased atmospheric resolution leads to a weaker AMOC. It also improves the simulated Gulf Stream separation; however, this is only the case if the ocean is locally eddy resolving and reacts to the improved atmosphere. We argue that our results can be explained by reduced mean winds caused by higher cyclone activity. Increased resolution of the ocean affects the AMOC in several ways, thereby locally increasing or reducing the AMOC. The finer topography (and reduced dissipation) in the vicinity of the Caribbean basin tends to locally increase the AMOC. However, there is a reduction in the AMOC around 45°N, which relates to the reduced mixed layer depth in the Labrador Sea in simulations with refined ocean and changes in the North Atlantic current pathway. Furthermore, the eddy‐induced changes in the Southern Ocean increase the strength of the deep cell.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development, Copernicus Publications, 12(7), pp. 2635-2656, ISSN: 1991-9603
    Publication Date: 2019-08-19
    Description: Models from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) show substantial biases in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. Here, we analyze the influence of horizontal resolution in a hierarchy of five multi-resolution simulations with the AWI Climate Model (AWI-CM), the climate model used at the Al-fred Wegener Institute, Helmholtz Centre for Polar and Ma-rine Research, which employs a sea ice–ocean model com-ponent formulated on unstructured meshes. The ocean grid sizes considered range from a nominal resolution of ∼ 1◦ (CMIP5 type) up to locally eddy resolving. We show that increasing ocean resolution locally to resolve ocean eddies leads to reductions in deep ocean biases, although these im-provements are not strictly monotonic for the five different ocean grids. A detailed diagnosis of the simulations allows to identify the origins of the biases. We find that two key re-gions at the surface are responsible for the development of the deep bias in the Atlantic Ocean: the northeastern North Atlantic and the region adjacent to the Strait of Gibraltar. Furthermore, the Southern Ocean density structure is equally improved with locally explicitly resolved eddies compared to parameterized eddies. Part of the bias reduction can be traced back towards improved surface biases over outcrop-ping regions, which are in contact with deeper ocean layers along isopycnal surfaces. Our prototype simulations provide guidance for the optimal choice of ocean grids for AWI-CM to be used in the final runs for phase 6 of CMIP (CMIP6) and for the related flagship simulations in the High Resolution Model Intercomparison Project (HighResMIP). Quite remarkably, retaining resolution only in areas of high eddy activity along with excellent scalability characteristics of the unstructured-mesh sea ice–ocean model enables us to per-form the multi-centennial climate simulations needed in a CMIP context at (locally) eddy-resolving resolution with a throughput of 5–6 simulated years per day.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-10-17
    Description: Mass loss around the Antarctic Ice Sheet is driven by basal melting and iceberg calving,which constitute the two dominant paths of freshwater flux into the Southern Ocean. Although of similarmagnitude, icebergs play an important and still not fully understood role in the balance of heat andfreshwater around Antarctica. This lack of understanding is partly due to operational difficulties inlarge-scale monitoring in polar regions, despite observational and remote sensing efforts. In this study, anovel machine learning approach, augmented by visual inspection, was applied to three SyntheticAperture Radar (SAR) mosaics of the whole Antarctic continent and its adjacent coastal zone. Althoughoriginally intended for a mapping of the Antarctic continent, the SAR mosaics allow us to document theevolution and distribution of the size (and mass) of icebergs in the pan-Antarctic near-coastal zone for theyears 1997, 2000, and 2008. Our novel algorithm identified 7,649 icebergs in 1997, 13,712 icebergs in 2000,and 7,246 icebergs in 2008 with surface areas between 0.1 and 4,567.82 km2and total masses of 4,641.53,6,862.81, and 5,263.69 Gt, respectively. Large regional variability was observed, although a zonal patterndistribution is present. This has implications for future climate modeling studies that try to estimate thefreshwater flux from melting icebergs, which demands a realistic representation of the interannuallyvarying near-coastal iceberg pattern to initialize the simulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-27
    Description: Digital drawings of the sensors and instruments that have been deployed on the sea ice as part of the "Distributed Network" around Polarstern - during leg 1 of the year-long MOSAiC expedition to the Arctic Ocean. The drawings can be freely used in presentations and for science communication, e.g. if a wide audience needs to be addressed. We would appreciate a proper citation (e.g. Krueger and Rackow, 2020). The drawings have all been done on board of the supporting Russian research vessel Akademik Fedorov in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Quarterly Journal of the Royal Meteorological Society, JOHN WILEY & SONS LTD, 146(726), pp. 284-300, ISSN: 0035-9009
    Publication Date: 2020-04-27
    Description: This study introduces a new flow‐dependent distribution sampling (FDDS) scheme for air–sea coupling. The FDDS scheme is implemented in a climate model and used to improve the simulated mean and variability of atmospheric and oceanic surface fields and thus air–sea fluxes. Most coupled circulation models use higher resolutions in the sea ice and ocean compared to the atmospheric model component, thereby explicitly simulating the atmospheric subgrid‐scale at the interface. However, the commonly applied averaging of surface fields and air–sea fluxes tends to smooth fine‐scale structures, such as oceanic fronts. The stochastic FDDS scheme samples the resolved spatial ocean (and sea ice) subgrid distribution that is usually not visible to a coarser‐resolution atmospheric model. Randomly drawn nodal ocean values are passed to the corresponding atmospheric boxes for the calculation of surface fluxes, aiming to enhance surface flux variability. The resulting surface field perturbations of the FDDS scheme are based on resolved dynamics, displaying pronounced seasonality with realistic magnitude. The AWI Climate Model is used to test the scheme on interannual time‐scales. Our set‐up features a high ocean‐to‐atmosphere resolution ratio in the Tropics, with grid‐point ratios of about 60:1. Compared to the default deterministic averaging, changes are largest in the Tropics leading to an improved spatial distribution of precipitation with bias reductions of up to 50%. Enhanced sea‐surface temperature variability in boreal winter further improves the seasonal phase locking of temperature anomalies associated with the El Niño–Southern Oscillation. Mean 2m temperature, sea ice thickness and concentration react with a contrasting dipole pattern between hemispheres but a joint increase of monthly and interannual variability. This first approach to implement a flow‐dependent stochastic coupling scheme shows considerable benefits for simulations of global climate, and various extensions and modifications of the scheme are possible.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-02
    Description: In September 2019, the research icebreaker Polarstern started the largest multidisciplinary Arctic expedition to date, the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) drift experiment. Being moored to an ice floe for a whole year, thus including the winter season, the declared goal of the expedition is to better understand and quantify relevant processes within the atmosphere–ice–ocean system that impact the sea ice mass and energy budget, ultimately leading to much improved climate models. Satellite observations, atmospheric reanalysis data, and readings from a nearby meteorological station indicate that the interplay of high ice export in late winter and exceptionally high air temperatures resulted in the longest ice-free summer period since reliable instrumental records began. We show, using a Lagrangian tracking tool and a thermodynamic sea ice model, that the MOSAiC floe carrying the Central Observatory (CO) formed in a polynya event north of the New Siberian Islands at the beginning of December 2018. The results further indicate that sea ice in the vicinity of the CO (〈40 km distance) was younger and 36 % thinner than the surrounding ice with potential consequences for ice dynamics and momentum and heat transfer between ocean and atmosphere. Sea ice surveys carried out on various reference floes in autumn 2019 verify this gradient in ice thickness, and sediments discovered in ice cores (so-called dirty sea ice) around the CO confirm contact with shallow waters in an early phase of growth, consistent with the tracking analysis. Since less and less ice from the Siberian shelves survives its first summer (Krumpen et al., 2019), the MOSAiC experiment provides the unique opportunity to study the role of sea ice as a transport medium for gases, macronutrients, iron, organic matter, sediments and pollutants from shelf areas to the central Arctic Ocean and beyond. Compared to data for the past 26 years, the sea ice encountered at the end of September 2019 can already be classified as exceptionally thin, and further predicted changes towards a seasonally ice-free ocean will likely cut off the long-range transport of ice-rafted materials by the Transpolar Drift in the future. A reduced long-range transport of sea ice would have strong implications for the redistribution of biogeochemical matter in the central Arctic Ocean, with consequences for the balance of climate-relevant trace gases, primary production and biodiversity in the Arctic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-10-05
    Description: The Alfred Wegener Institute Climate Model (AWI‐CM) participates for the first time in the Coupled Model Intercomparison Project (CMIP), CMIP6. The sea ice‐ocean component, FESOM, runs on an unstructured mesh with horizontal resolutions ranging from 8 to 80 km. FESOM is coupled to the Max Planck Institute atmospheric model ECHAM 6.3 at a horizontal resolution of about 100 km. Using objective performance indices, it is shown that AWI‐CM performs better than the average of CMIP5 models. AWI‐CM shows an equilibrium climate sensitivity of 3.2°C, which is similar to the CMIP5 average, and a transient climate response of 2.1°C which is slightly higher than the CMIP5 average. The negative trend of Arctic sea‐ice extent in September over the past 30 years is 20–30% weaker in our simulations compared to observations. With the strongest emission scenario, the AMOC decreases by 25% until the end of the century which is less than the CMIP5 average of 40%. Patterns and even magnitude of simulated temperature and precipitation changes at the end of this century compared to present‐day climate under the strong emission scenario SSP585 are similar to the multi‐model CMIP5 mean. The simulations show a 11°C warming north of the Barents Sea and around 2°C to 3°C over most parts of the ocean as well as a wetting of the Arctic, subpolar, tropical, and Southern Ocean. Furthermore, in the northern middle latitudes in boreal summer and autumn as well as in the southern middle latitudes, a more zonal atmospheric flow is projected throughout the year.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...