GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI  (4)
  • Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM  (3)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit (2017): Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial. Nature Communications, 8(1), 13 pp, https://doi.org/10.1038/s41467-017-00552-1
    Publication Date: 2023-03-16
    Description: Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Abelmann, Andrea; Gersonde, Rainer; Knorr, Gregor; Zhang, Xu; Chapligin, Bernhard; Maier, Edith; Esper, Oliver; Friedrichsen, Hans; Lohmann, Gerrit; Meyer, Hanno; Tiedemann, Ralf (2015): The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nature Communications, 6, 8136, https://doi.org/10.1038/ncomms9136
    Publication Date: 2023-03-30
    Description: Reduced surface-deep ocean exchange and enhanced nutrient consumption by phytoplankton in the Southern Ocean have been linked to lower glacial atmospheric CO2. However, identification of the biological and physical conditions involved and the related processes remains incomplete. Here we specify Southern Ocean surface-subsurface contrasts using a new tool, the combined oxygen and silicon isotope measurement of diatom and radiolarian opal, in combination with numerical simulations. Our data do not indicate a permanent glacial halocline related to melt water from icebergs. Corroborated by numerical simulations, we find that glacial surface stratification was variable and linked to seasonal sea-ice changes. During glacial spring-summer, the mixed layer was relatively shallow, while deeper mixing occurred during fall-winter, allowing for surface-ocean refueling with nutrients from the deep reservoir, which was potentially richer in nutrients than today. This generated specific carbon and opal export regimes turning the glacial seasonal sea-ice zone into a carbon sink.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 12 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Meyer, Vera D; Hefter, Jens; Lohmann, Gerrit; Max, Lars; Tiedemann, Ralf; Mollenhauer, Gesine (2017): Summer temperature evolution on the Kamchatka Peninsula, Russian Far East, during the past 20000 years. Climate of the Past, 13(4), 359-377, https://doi.org/10.5194/cp-13-359-2017
    Publication Date: 2023-03-16
    Description: Little is known about the climate evolution on the Kamchatka Peninsula during the last glacial?interglacial transition as existing climate records do not reach beyond 12 ka BP. In this study, a summer temperature record for the past 20 kyr is presented. Branched glycerol dialkyl glycerol tetraethers, terrigenous biomarkers suitable for continental air temperature reconstructions, were analyzed in a sediment core from the western continental margin off Kamchatka in the marginal northwest Pacific (NW Pacific). The record suggests that summer temperatures on Kamchatka during the Last Glacial Maximum (LGM) equaled modern temperatures. We suggest that strong southerly winds associated with a pronounced North Pacific High pressure system over the subarctic NW Pacific accounted for the warm conditions. A comparison with an Earth system model reveals discrepancies between model and proxy-based reconstructions for the LGM temperature and atmospheric circulation in the NW Pacific realm. The deglacial temperature development is characterized by abrupt millennial-scale temperature oscillations. The Bølling?Allerød warm phase and the Younger Dryas cold spell are pronounced events, suggesting a connection to North Atlantic climate variability.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kühn, Hartmut; Lembke-Jene, Lester; Lohmann, Gerrit; Gersonde, Rainer; Esper, Oliver; Arz, Helge Wolfgang; Kuhn, Gerhard; Tiedemann, Ralf (submitted): Tidal forcing and ocean-atmosphere dynamics influence on productivity variations in the deglacial Bering Sea. Geophysical Research Letters
    Publication Date: 2024-02-16
    Description: During the last glacial termination, the upper North Pacific Ocean underwent dramatic and rapid changes in oxygenation that lead to the transient intensification of oxygen minimum zones (OMZs), recorded by the widespread occurrence of laminated sediments on circum-Pacific continental margins. We present a new laminated sediment record from the mid-depth (1100 m) northern Bering Sea margin that provides insight into these deglacial OMZ maxima with exceptional, decadal-scale detail. Combined ultrahigh-resolution micro-X-ray-fluorescence (micro-XRF) data and sediment facies analysis of laminae reveal an alternation between predominantly terrigenous and diatom-dominated opal sedimentation. The diatomaceous laminae are interpreted to represent spring/summer productivity events related to the retreating sea ice margin.We identified five laminated sections in the deglacial part of our site. Lamina counts were carried out on these sections and correlated with the Bølling–Allerød and Preboreal phases in the North Greenland Ice Core (NGRIP) oxygen isotope record, indicating an annual deposition of individual lamina couplets (varves). The observed rapid decadal intensifications of anoxia, in particular within the Bølling–Allerød, are tightly coupled to short-term warm events through increases in regional export production. This dependence of laminae formation on warmer temperatures is underlined by a correlation with published Bering Sea sea surface temperature records and d18O data of planktic foraminifera from the Gulf of Alaska. The rapidity of the observed changes strongly implies a close atmospheric teleconnection between North Pacific and North Atlantic regions.We suggest that concomitant increases in export production and subsequent remineralization of organic matter in the Bering Sea, in combination with oxygen-poor waters entering the Being Sea, drove down oxygen concentrations to values below 0.1ml/l and caused laminae preservation. Calculated benthic–planktic ventilation ages show no significant variations throughout the last deglaciation, indicating that changes in formation rates or differing sources of North Pacific mid-depth waters are not prime candidates for strengthening the OMZ at our site. The age models established by our correlation procedure allow for the determination of calendar age control points for the Bølling–Allerød and the Preboreal that are independent of the initial radiocarbon-based chronology. Resulting surface reservoir ages range within 730–990 yr during the Bølling–Allerød, 800–1100 yr in the Younger Dryas, and 765–775 yr for the Preboreal.
    Keywords: AWI_Paleo; Paleoenvironmental Reconstructions from Marine Sediments @ AWI
    Type: Dataset
    Format: application/zip, 17 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brocas, William M; Felis, Thomas; Obert, J Christina; Gierz, Paul; Lohmann, Gerrit; Scholz, Denis; Kölling, Martin; Scheffers, Sander R (2016): Last interglacial temperature seasonality reconstructed from tropical Atlantic corals. Earth and Planetary Science Letters, 449, 418-429, https://doi.org/10.1016/j.epsl.2016.06.005
    Publication Date: 2024-05-31
    Description: Reconstructions of last interglacial (LIG, MIS 5e, ~127-117 ka) climate offer insights into the natural response and variability of the climate system during a period partially analogous to future climate change scenarios. We present well preserved fossil corals (Diploria strigosa) recovered from the southern Caribbean island of Bonaire (Caribbean Netherlands). These have been precisely dated by the 230Th/U-method to between 130 and 120 ka ago. Annual banding of the coral skeleton enabled construction of time windows of monthly resolved strontium/calcium (Sr/Ca) temperature proxy records. In conjunction with a previously published 118 ka coral record, our eight records of up to 37 years in length, cover a total of 105 years within the LIG period. From these, sea surface temperature (SST) seasonality and variability in the tropical North Atlantic Ocean is reconstructed. We detect similar to modern SST seasonality of ~2.9 °C during the early (130 ka) and the late LIG (120-118 ka). However, within the mid-LIG, a significantly higher than modern SST seasonality of 4.9 °C (at 126 ka) and 4.1 °C (at 124 ka) is observed. These findings are supported by climate model simulations and are consistent with the evolving amplitude of orbitally induced changes in seasonality of insolation throughout the LIG, irrespective of wider climatic instabilities that characterised this period. The climate model simulations suggest that the SST seasonality changes documented in our LIG coral Sr/Ca records are representative of larger regions within the tropical North Atlantic. These simulations also suggest that the reconstructed SST seasonality increase during the mid-LIG is caused primarily by summer warming. A 124 ka old coral documents, for the first time, evidence of decadal SST variability in the tropical North Atlantic during the LIG, akin to that observed in modern instrumental records.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brocas, William M; Felis, Thomas; Gierz, Paul; Lohmann, Gerrit; Werner, Martin; Obert, J Christina; Scholz, Denis; Kölling, Martin; Scheffers, Sander R (2018): Last interglacial hydroclimate seasonality reconstructed from tropical Atlantic corals. Paleoceanography and Paleoclimatology, 33(2), 198-213, https://doi.org/10.1002/2017PA003216
    Publication Date: 2024-05-31
    Description: The seasonality of hydroclimate during past periods of warmer than modern global temperatures is a critical component for understanding future climate change scenarios. Although partially analogous to these scenarios, the last interglacial (LIG, Marine Isotope Stage 5e, ~127-117 ka) is a popular test-bed. We present coral d18O monthly resolved records from multiple Bonaire (southern Caribbean) fossil corals (Diploria strigosa) that date to between 130 and 118 ka. These records represent up to 37 years and cover a total of 105 years, offering insights into the seasonality and characteristics of LIG tropical Atlantic hydroclimate. Our coral d18O records and available coral Sr/Ca- sea surface temperature (SST) records reveal new insights into the variable relationship between the seasonality of tropical Atlantic seawater d18O (d18Oseawater) and SST. Coral d18O seasonality is found to coevolve with SST and insolation seasonality throughout the LIG, culminating in significantly higher than modern values at 124 and 126 ka. At 124 ka, we reconstruct a 2-month lead of the coral d18O vs. the Sr/Ca-SST annual cycle and increased d18Oseawater seasonality. A fully-coupled climate model simulates a concomitant increase of southern Caribbean Sea summer precipitation and depletion of summer d18Oseawater. LIG regional hydroclimate differed from today's semiarid climate with a minor rainy season during winter. Cumulatively our coral d18O, d18Oseawater and model findings indicate a mid-LIG northward expansion of the South American Intertropical Convergence Zone into the southern Caribbean Sea, highlighting the importance of regional aspects within reconstructions of LIG hydroclimate seasonality.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 7 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Giry, Cyril; Felis, Thomas; Kölling, Martin; Wei, Wei; Lohmann, Gerrit; Scheffers, Sander R (2013): Controls of Caribbean surface hydrology during the mid- to late Holocene: insights from monthly resolved coral records. Climate of the Past, 9, 841-858, https://doi.org/10.5194/cp-9-841-2013
    Publication Date: 2024-05-31
    Description: Several proxy-based and modeling studies have investigated long-term changes in Caribbean climate during the Holocene, however, very little is known on its variability on short timescales. Here we reconstruct seasonality and interannual to multidecadal variability of sea surface hydrology of the southern Caribbean Sea by applying paired coral Sr/Ca and d18O measurements on fossil annually banded Diploria strigosa corals from Bonaire. This allows for better understanding of seasonal to multidecadal variability of the Caribbean hydrological cycle during the mid- to late Holocene. The monthly resolved coral Delta d18O records are used as a proxy for the oxygen isotopic composition of seawater (d18Osw) of the southern Caribbean Sea. Consistent with modern day conditions, annual d18Osw cycles reconstructed from three modern corals reveal that freshwater budget at the study site is influenced by both net precipitation and advection of tropical freshwater brought by wind-driven surface currents. In contrast, the annual d18Osw cycle reconstructed from a mid-Holocene coral indicates a sharp peak towards more negative values in summer, suggesting intense summer precipitation at 6 ka BP (before present). In line with this, our model simulations indicate that increased seasonality of the hydrological cycle at 6 ka BP results from enhanced precipitation in summertime. On interannual to multidecadal timescales, the systematic positive correlation observed between reconstructed sea surface temperature and salinity suggests that freshwater discharged from the Orinoco and Amazon rivers and transported into the Caribbean by wind-driven surface currents is a critical component influencing sea surface hydrology on these timescales.
    Keywords: Center for Marine Environmental Sciences; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM
    Type: Dataset
    Format: application/zip, 9 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...