GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta mathematicae applicatae sinica 5 (1989), S. 372-381 
    ISSN: 1618-3932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract In this paper we introduce some Kantorovich inequalities for the Euclidean norm of a matrix, that is, the upper bounds to ∥(X'B −1 X) −1 X'B −1 AB −1 X(X'B −1X)−1 X' BX(X'AX) −1 X'CX∥2 are given, where ∥A∥2=trace (A'A). In terms of these inequalities the upper bounds to the three measures of inefficiency of the generalized least squares estimator (GLSE) in general Gauss-Markov models are also established.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-16
    Description: A new global climate model setup using FESOM2.0 for the sea ice‐ocean component and ECHAM6.3 for the atmosphere and land surface has been developed. Replacing FESOM1.4 by FESOM2.0 promises a higher efficiency of the new climate setup compared to its predecessor. The new setup allows for long‐term climate integrations using a locally eddy‐resolving ocean. Here it is evaluated in terms of (1) the mean state and long‐term drift under preindustrial climate conditions, (2) the fidelity in simulating the historical warming, and (3) differences between coarse and eddy‐resolving ocean configurations. The results show that the realism of the new climate setup is overall within the range of existing models. In terms of oceanic temperatures, the historical warming signal is of smaller amplitude than the model drift in case of a relatively short spin‐up. However, it is argued that the strategy of “de‐drifting” climate runs after the short spin‐up, proposed by the HighResMIP protocol, allows one to isolate the warming signal. Moreover, the eddy‐permitting/resolving ocean setup shows notable improvements regarding the simulation of oceanic surface temperatures, in particular in the Southern Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Wiley
    In:  EPIC3Journal of Geophysical Research-Oceans, Wiley, 121, pp. 4928-4945, ISSN: 0148-0227
    Publication Date: 2019-07-17
    Description: A significant increase in sea surface temperature (SST) is observed over the midlatitude western boundary currents (WBCs) during the past century. However, the mechanism for this phenomenon remains poorly understood due to limited observations. In the present paper, several coupled parameters (i.e., sea surface temperature (SST), ocean surface heat fluxes, ocean water velocity, ocean surface winds and sea level pressure (SLP)) are analyzed to identify the dynamic changes of the WBCs. Three types of independent data sets are used, including reanalysis products, satellite-blended observations. and climate model outputs from the fifth phase of the Climate Model Intercomparison Project (CMIP5). Based on these broad ranges of data, we find that the WBCs (except the Gulf Stream) are intensifying and shifting toward the poles as long-term effects of global warming. An intensification and poleward shift of near-surface ocean winds, attributed to positive annular mode-like trends, are proposed to be the forcing of such dynamic changes. In contrast to the other WBCs, the Gulf Stream is expected to be weaker under global warming, which is most likely related to a weakening of the Atlantic Meridional Overturning Circulation (AMOC). However, we also notice that the natural variations of WBCs might conceal the long-term effect of global warming in the available observational data sets, especially over the Northern Hemisphere. Therefore, long-term observations or proxy data are necessary to further evaluate the dynamics of the WBCs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-09-17
    Description: Recent evidence shows that wind‐driven ocean currents, like the western boundary currents, are strongly affected by global warming. However, due to insufficient observations both on temporal and spatial scales, the impact of climate change on large‐scale ocean gyres is still not clear. Here, based on satellite observations of sea surface height and sea surface temperature, we find a consistent poleward shift of the major ocean gyres. Due to strong natural variability, most of the observed ocean gyre shifts are not statistically significant, implying that natural variations may contribute to the observed trends. However, climate model simulations forced with increasing greenhouse gases suggest that the observed shift is most likely to be a response of global warming. The displacement of ocean gyres, which is coupled with the poleward shift of extratropical atmospheric circulation, has broad impacts on ocean heat transport, regional sea level rise, and coastal ocean circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-13
    Description: We present an interdisciplinary review of the observed and projected variations in atmospheric and oceanic circulation within the southwestern South Atlantic focused on basin-scale processes driven by climate change, and their potential impact on the regional fisheries. The observed patterns of atmospheric circulation anomalies are consistent with anthropogenic climate change. There is strong scientific evidence suggesting that the Brazil Current is intensifying and shifting southwards during the past decades in response to changes in near-surface wind patterns, leading to intense ocean warming along the path of the Brazil Current, the South Brazil Bight, and in the Río de la Plata. These changes are presumably responsible for the poleward shift of commercially important pelagic species in the region and the long-term shift from cold-water to warm-water species in industrial fisheries of Uruguay. Scientific and traditional knowledge shows that climate change is also affecting small-scale fisheries. Long-term records suggest that mass mortalities decimated harvested clam populations along coastal ecosystems of the region, leading to prolonged shellfishery closures. More frequent and intense harmful algal blooms together with unfavorable environmental conditions driven by climate change stressors affect coastal shellfisheries, impact economic revenues, and damage the livelihood of local communities. We identify future modelling needs to reduce uncertainty in the expected effects of climate change on marine fisheries. However, the paucity of fisheries data prevents a more effective assessment of the impact of climate change on fisheries and hampers the ability of governments and communities to adapt to these changes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-07-13
    Description: Growing evidence indicates that the atmospheric and oceanic circulation experiences a systematic poleward shift in a warming climate. However, the complexity of the climate system, including the coupling between the ocean and the atmosphere, natural climate variability and land-sea distribution, tends to obfuscate the causal mechanism underlying the circulation shift. Here, using an idealised coupled aqua-planet model, we explore the mechanism of the shifting circulation, by isolating the contributing factors from the direct CO2 forcing, the indirect ocean surface warming, and the wind-stress feedback from the ocean dynamics. We find that, in contrast to the direct CO2 forcing, ocean surface warming, in particular an enhanced subtropical ocean warming, plays an important role in driving the circulation shift. This enhanced subtropical ocean warming emerges from the background Ekman convergence of surface anomalous heat in the absence of the ocean dynamical change. It expands the tropical warm water zone, causes a poleward shift of the mid-latitude temperature gradient, hence forces a corresponding shift in the atmospheric circulation and the associated wind pattern. The shift in wind, in turn drives a shift in the ocean circulation. Our simulations, despite being idealised, capture the main features of the observed climate changes, for example, the enhanced subtropical ocean warming, poleward shift of the patterns of near-surface wind, sea level pressure, storm tracks, precipitation and large-scale ocean circulation, implying that increase in greenhouse gas concentrations not only raises the temperature, but can also systematically shift the climate zones poleward.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-02-16
    Description: Polysaccharide is efficient in attenuation of metabolic ailments and modulation of gut microbiota as prebiotics. The therapeutic effect of Inonotus obliquus polysaccharide (IOP) on chronic pancreatitis (CP) in mi...
    Electronic ISSN: 2191-0855
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...