GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The benthic environment is a crucial component of marine systems in the provision of ecosystem services, sustaining biodiversity and in climate regulation, and therefore important to human society. With the contemporary increase in computational power, model resolution and technological improvements in quality and quantity of benthic data, it is necessary to ensure that benthic systems are appropriately represented in coupled benthic-pelagic biogeochemical and ecological modelling studies. In this paper we focus on five topical challenges related to various aspects of modelling benthic environments: organic matter reactivity, dynamics of benthic-pelagic boundary layer, microphytobenthos, biological transport and small-scale heterogeneity, and impacts of episodic events. We discuss current gaps in their understanding and indicate plausible ways ahead. Further, we propose a three-pronged approach for the advancement of benthic and benthic-pelagic modelling, essential for improved understanding, management and prediction of the marine environment. This includes: (A) development of a traceable and hierarchical framework for benthic-pelagic models, which will facilitate integration among models, reduce risk of bias, and clarify model limitations; (B) extended cross-disciplinary approach to promote effective collaboration between modelling and empirical scientists of various backgrounds and better involvement of stakeholders and end-users; (C) a common vocabulary for terminology used in benthic modelling, to promote model development and integration, and also to enhance mutual understanding.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-05-26
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ECO2 Project Office
    In:  ECO2 Deliverable, D12.2 . ECO2 Project Office, 6 pp.
    Publication Date: 2019-03-11
    Description: In order to proceed with speculative modelling of the impacts of potential leakage of geologically stored carbon, it is necessary to develop plausible scenarios. Here a range of such scenarios are developed based on a consensus of the possible geological mechanisms of leakage, namely abandoned wells, geological faults and operational blowouts. Whilst the resulting scenarios remain highly speculative, they do enable short term progress in modelling and provide a basis for further debate and refinement.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ECO2 Project
    In:  ECO2 Deliverable, D4.4 . ECO2 Project, Kiel, Germany, 21 pp.
    Publication Date: 2019-03-11
    Description: This report presents a distillation of the main findings from ECO2 WP4, together with information available from other EU and Nationally funded projects, presented within and specifically for the context of Environmental Best Practice. The information and key messages contained within this deliverable (D4.4) will be directly applied to the project wide “Guidance on Environmental Best Practice” and will form the basis of Chapter 6 “Assessing biological impact of CO2 leakage”. There were 8 key findings that came from the ECO2 research conducted with WP4: - Exposure to elevated levels of CO2 has a negative impact on marine organisms - There is a wide range of CO2 sensitivities across different marine taxa and groups - Care must be taken when predicting species specific response and sensitivity to CO2 for Environmental Risk Assessments - Exposure to elevated levels of CO2 has a negative impact on marine communities, biodiversity and ecosystem processes / functions - The leakage / release of formation water can have a negative impact on marine organisms - Other environmental factors could exacerbate or ameliorate the impact of CCS leakage - Some biological responses may be employed in a programme of Environmental Monitoring - Collecting spatially and temporally referenced biological data is important for creating effective Baseline Surveys
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-06
    Description: Highlights • A unique and novel CO2 release experiment in the marine environment. • Field-scale simulated leak of CO2 gas from a carbon capture and storage facility. • Experimental design and set-up for the QICS experiment, conducted during the summer of 2012. Abstract Carbon capture and storage is a mitigation strategy that can be used to aid the reduction of anthropogenic CO2 emissions. This process aims to capture CO2 from large point-source emitters and transport it to a long-term storage site. For much of Europe, these deep storage sites are anticipated to be sited below the sea bed on continental shelves. A key operational requirement is an understanding of best practice of monitoring for potential leakage and of the environmental impact that could result from a diffusive leak from a storage complex. Here we describe a controlled CO2 release experiment beneath the seabed, which overcomes the limitations of laboratory simulations and natural analogues. The complex processes involved in setting up the experimental facility and ensuring its successful operation are discussed, including site selection, permissions, communications and facility construction. The experimental design and observational strategy are reviewed with respect to scientific outcomes along with lessons learnt in order to facilitate any similar future.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-03
    Description: Highlights • Development of a marine monitoring system suitable for operational CCS is achievable. • Monitoring should be hierarchical, starting with anomaly detection. • Comprehensive baselines are required to support monitoring. Abstract The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Highlights • Approaches for CO2 leakage detection, attribution and quantification monitoring exist. • Many approaches cover multiple monitoring tasks simultaneously. • Sonars and chemical sensors on ships or AUVs can cover large areas. • Newer, more specific technologies can detect, verify and quantify smaller, localised leaks. Environmental monitoring of offshore Carbon Capture and Storage (CCS) complexes requires robust methodologies and cost-effective tools to detect, attribute and quantify CO2 leakage in the unlikely event it occurs from a sub-seafloor reservoir. Various approaches can be utilised for environmental CCS monitoring, but their capabilities are often undemonstrated and more detailed monitoring strategies need to be developed. We tested and compared different approaches in an offshore setting using a CO2 release experiment conducted at 120 m water depth in the Central North Sea. Tests were carried out over a range of CO2 injection rates (6 - 143 kg d−1) comparable to emission rates observed from abandoned wells. Here, we discuss the benefits and challenges of the tested approaches and compare their relative cost, temporal and spatial resolution, technology readiness level and sensitivity to leakage. The individual approaches demonstrate a high level of sensitivity and certainty and cover a wide range of operational requirements. Additionally, we refer to a set of generic requirements for site-specific baseline surveys that will aid in the interpretation of the results. Critically, we show that the capability of most techniques to detect and quantify leakage exceeds the currently existing legal requirements.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...