GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-12-15
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Pearce, Christopher R; Coe, Angela L; Cohen, Anthony S (2010): Seawater redox variations during the deposition of the Kimmeridge Clay Formation, United Kingdom (Upper Jurassic): Evidence from molybdenum isotopes and trace metal ratios. Paleoceanography, 25(4), PA4213, https://doi.org/10.1029/2010PA001963
    Publication Date: 2023-05-12
    Description: The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1-7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC 〉7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in d98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean d98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environments.
    Keywords: Dorset; England; HAND; Sampling by hand
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-05-12
    Keywords: Aluminium oxide; Chromium; Copper; Dorset; England; HAND; Height; Iron oxide, Fe2O3; Magnesium oxide; Manganese oxide; Nickel; Sample code/label; Sampling by hand; SECTION, height; Silicon dioxide; Strontium; Thorium; Titanium dioxide; Uranium; Vanadium; Vanadium/Nickel ratio; X-ray fluorescence (XRF); Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 663 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-05-12
    Keywords: Ammonite zone; Bed; Calcium carbonate; Carbon, organic, total; Degree of pyritization; Dorset; England; HAND; Height; Lithology/composition/facies; Molybdenum; Multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS); Number; Rhenium; Rhenium/molybdenum ratio; Sample code/label; Sampling by hand; SECTION, height; Sulfur, total; δ98/95Mo; δ98/95Mo, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 585 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-04-23
    Description: Constraints on the variability of chromium (Cr) isotopic compositions in the modern ocean are required to validate the use of Cr isotopic signatures in ancient authigenic marine sediments for reconstructing past levels of atmospheric and ocean oxygenation. This study presents dissolved Cr concentrations (Cr-T, where Cr-T = Cr(VI) + Cr(III)) and Cr isotope data (delta Cr-53) for shelf, slope and open ocean waters within the oxygen minimum zone (OMZ) of the eastern sub-tropical Atlantic Ocean. Although dissolved oxygen concentrations were as low as 44-90 mu mol kg(-1) in the core of the OMZ, there was no evidence for removal of Cr(VI). Nonetheless, there was significant variability in seawater delta Cr-53, with values ranging from 1.08 to 1.72 parts per thousand. Shelf Cr-T concentrations were slightly lower (2.21 +/- 0.07 nmol kg(-1)) than in open ocean waters at the same water depth (between 0 and 160 m, 2.48 +/- 0.07 nmol kg(-1)). The shelf waters also had higher delta Cr-53 values (1.41 +/- 0.14 parts per thousand compared to 1.18 +/- 0.05 parts per thousand for open ocean waters shallower than 160 m). This is consistent with partial reduction of Cr(VI) to Cr(III), with subsequent removal of isotopically light Cr(III) onto biogenic particles. We also provide evidence for input of relatively isotopically heavy Cr from sediments on the shelf. Intermediate and deep water masses (AAIW and NADW) show a rather limited range of delta Cr-53 values (1.19 +/- 0.09 parts per thousand) and inputs of Cr from remineralisation of organic material or re-oxidation of Cr (III) appear to be minimal. Authigenic marine precipitates deposited in deep water in the open ocean therefore have the potential to faithfully record seawater delta Cr-53, whereas archives of seawater delta Cr-53 derived from shelf sediments must be interpreted with caution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Fluid-rock interactions in hydrothermal systems at or near mid-oceanic ridges (MOR) play a major role in determining the composition of the oceanic crust and seawater. To quantify the processes that govern cation exchange in these environments we have experimentally studied the isotopic evolution of δ26/24Mg in the fluid phase during seawater-basalt interaction at 250 and 290 °C. Mass balance constraints indicate that isotopically heavy Mg was preferentially incorporated into non-exchangeable (octahedral) sites in secondary clay minerals such as saponite (Mg-rich smectite), leaving residual fluids enriched in light Mg isotopes. The magnitude of fractionation observed during smectite precipitation in our experiments () ranged from ‰ to ‰. This observation, which contrasts with the preferential uptake of light Mg isotopes into biogenic and inorganic marine carbonates, highlights the potential utility of Mg isotopes as tracers of the precipitation dynamics of authigenic Mg-silicate and Mg-carbonate phases. Furthermore, although Mg isotopic fractionation is often masked by the almost complete removal of Mg in high temperature marine hydrothermal systems, our experiments demonstrate that it does become significant at lower temperatures where Mg removal by clay formation is incomplete. Under such conditions, this fractionation will create isotopically light fluids due to smectite precipitation, thus potentially represents an important component of the marine Mg isotope inventory.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Highlights • Approaches for CO2 leakage detection, attribution and quantification monitoring exist. • Many approaches cover multiple monitoring tasks simultaneously. • Sonars and chemical sensors on ships or AUVs can cover large areas. • Newer, more specific technologies can detect, verify and quantify smaller, localised leaks. Environmental monitoring of offshore Carbon Capture and Storage (CCS) complexes requires robust methodologies and cost-effective tools to detect, attribute and quantify CO2 leakage in the unlikely event it occurs from a sub-seafloor reservoir. Various approaches can be utilised for environmental CCS monitoring, but their capabilities are often undemonstrated and more detailed monitoring strategies need to be developed. We tested and compared different approaches in an offshore setting using a CO2 release experiment conducted at 120 m water depth in the Central North Sea. Tests were carried out over a range of CO2 injection rates (6 - 143 kg d−1) comparable to emission rates observed from abandoned wells. Here, we discuss the benefits and challenges of the tested approaches and compare their relative cost, temporal and spatial resolution, technology readiness level and sensitivity to leakage. The individual approaches demonstrate a high level of sensitivity and certainty and cover a wide range of operational requirements. Additionally, we refer to a set of generic requirements for site-specific baseline surveys that will aid in the interpretation of the results. Critically, we show that the capability of most techniques to detect and quantify leakage exceeds the currently existing legal requirements.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Highlights • Surface sediments react quickly with leaking CO2 and release cations into porewaters. • Both carbonate and silicate mineral dissolution lead to neutralization of CO2 in the sediments. • During short-term exposure to CO2 no toxic substances were released from North Sea surface sediments. • Porewater composition can be used as a diagnostic indicator of CO2 leakage from storage reservoirs. Abstract Sub-seabed geological CO2 storage is discussed as a climate mitigation strategy, but the impact of any leakage of stored CO2 into the marine environment is not well known. In this study, leakage from a CO2 storage reservoir through near-surface sediments was mimicked for low leakage rates in the North Sea. Field data were combined with laboratory experiments and transport-reaction modelling to estimate CO2 and mineral dissolution rates, and to assess the mobilization of metals in contact with CO2-rich fluids and their potential impact on the environment. We found that carbonate and silicate minerals reacted quickly with the dissolved CO2, increasing porewater alkalinity and neutralizing about 5% of the injected CO2. The release of Ca, Sr, Ba and Mn was mainly controlled by carbonate dissolution, while Fe, Li, B, Mg, and Si were released from silicate minerals, mainly from deeper sediment layers. No toxic metals were released from the sediments and overall the injected CO2 was only detected up to 1 m away from seabed CO2 bubble streams. Our results suggest that low leakage rates of CO2 over short timescales have minimal impact on the benthic environment. However, porewater composition and temperature are effective indicators for leakage detection, even at low CO2 leakage rates.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights • Inherent & added tracers were tested for CO2 leakage attribution & quantification. • Additionally, CO2 leakage was quantified directly by the inverted funnel-technique. • All tracers except 18O were capable of attributing the CO2 source. • In total, ∼43 % of total injected CO2 leaked across the seabed. To inform cost-effective monitoring of offshore geological storage of carbon dioxide (CO2), a unique field experiment, designed to simulate leakage of CO2 from a sub-seafloor storage reservoir, was carried out in the central North Sea. A total of 675 kg of CO2 were released into the shallow sediments (∼3 m below seafloor) for 11 days at flow rates between 6 and 143 kg d-1. A set of natural, inherent tracers (13C, 18O) of injected CO2 and added, non-toxic tracer gases (octafluoropropane, sulfur hexafluoride, krypton, methane) were used to test their applicability for CO2 leakage attribution and quantification in the marine environment. All tracers except 18O were capable of attributing the CO2 source. Tracer analyses indicate that CO2 dissolution in sediment pore waters ranged from 35 % at the lowest injection rate to 41% at the highest injection rate. Direct measurements of gas released from the sediment into the water column suggest that 22 % to 48 % of the injected CO2 exited the seafloor at, respectively, the lowest and the highest injection rate. The remainder of injected CO2 accumulated in gas pockets in the sediment. The methodologies can be used to rapidly confirm the source of leaking CO2 once seabed samples are retrieved.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...