GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Ocean bottom ; Submarine geology ; Marine biology ; Sea-floor spreading ; Hydrothermal deposits ; Marine geophysics ; Sea-floor spreading ; Hydrothermal deposits ; Meeresgeologie ; Aufsatzsammlung ; Ozeanische Erdkruste ; Meeresboden ; Plattentektonik ; Seafloor spreading ; Mittelozeanischer Rücken ; Meeresgeologie ; Meeresbiologie ; Hydrothermale Phase ; Seafloor spreading
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (VIII, 303 Seiten)
    ISBN: 1862390231
    Series Statement: Geological Society special publication 148
    DDC: 551.46084
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    London : Geological Society
    Keywords: Ocean bottom ; Submarine geology ; Marine biology ; Sea-floor spreading ; Hydrothermal deposits ; Marine geophysics ; Sea-floor spreading ; Hydrothermal deposits ; Meeresgeologie ; Aufsatzsammlung ; Ozeanische Erdkruste ; Meeresboden ; Plattentektonik ; Seafloor spreading ; Mittelozeanischer Rücken ; Meeresgeologie ; Meeresbiologie ; Ozeanische Erdkruste ; Meeresboden ; Plattentektonik ; Seafloor spreading ; Mittelozeanischer Rücken ; Meeresgeologie ; Meeresbiologie ; Hydrothermale Phase ; Seafloor spreading
    Type of Medium: Book
    Pages: VIII, 303 S. , Ill., graph. Darst.
    ISBN: 1862390231
    Series Statement: Special publication / Geological Society 148
    DDC: 551.46/084
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mills, Rachel; Taylor, Sarah L; Pälike, Heiko; Thomson, John (2010): Hydrothermal sediments record changes in deep water oxygen content in the SE Pacific. Paleoceanography, 25(4), PA4226, https://doi.org/10.1029/2010PA001959
    Publication Date: 2023-05-12
    Description: The distribution of redox-sensitive metals in sediments is potentially a proxy for past ocean ventilation and productivity, but deconvolving these two major controls has proved difficult to date. Here we present a 740 kyr long record of trace element concentrations from an archived sediment core collected at ~15°S on the western flank of the East Pacific Rise (EPR) on 1.1 Myr old crust and underlying the largest known hydrothermal plume in the world ocean. The downcore trace element distribution is controlled by a variable diagenetic overprint of the inferred primary hydrothermal plume input. Two main diagenetic processes are operating at this site: redox cycling of transition metals and ferrihydrite to goethite transition during aging. The depth of oxidation in these sediments is controlled by fluctuations in the relative balance of bottom water oxygen and electron donor input (organic matter and hydrothermal sulfides). These fluctuations induce apparent variations in the accumulation of redox-sensitive species with time. Subsurface U and P peaks in glacial age sediments, in this and other published data sets along the southern EPR, indicate that basin-wide changes in deep ocean ventilation, in particular at glacial-interglacial terminations II, III, IV, and V, alter the depth of the oxidation front in the sediments. These basin-wide changes in the deep Pacific have significant implications for carbon partitioning in the ocean-atmosphere system, and the distribution of redox-sensitive metals in ridge crest sediment can be used to reconstruct past ocean conditions at abyssal depths in the absence of alternative proxy records.
    Keywords: AGE; Aluminium; Barium; Cadmium; Calcium; Copper; DEPTH, sediment/rock; Eastern Equatorial Pacific; GS7202-35; Iron; Latewood; Manganese; Molybdenum; PC; Piston corer; Silicon; Uranium; Vanadium; X-ray fluorescence (XRF)
    Type: Dataset
    Format: text/tab-separated-values, 2136 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-01
    Keywords: 3B; 4B; 5B; BC; Box corer; Bromine; CD84; CD84_3B; CD84_4B; CD84_5B; Charles Darwin; Chlorine; Date/Time of event; DEPTH, sediment/rock; Elevation of event; Event label; Iodine; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; NE Atlantic; Ocean Margin Exchange Project; OMEX; Phosphorus; Sulfur, total; X-ray fluorescence on flux diluted fused bead; X-ray fluorescence on pressed powder
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-01
    Keywords: 3B; 4B; 5B; Aluminium; Arsenic; Barium; BC; Box corer; Calcium; CD84; CD84_3B; CD84_4B; CD84_5B; Cerium; Charles Darwin; Chromium; Copper; Date/Time of event; DEPTH, sediment/rock; Elevation of event; Event label; Gallium; Iron; JGOFS; Joint Global Ocean Flux Study; Lanthanum; Latitude of event; Lead; Longitude of event; Magnesium; Manganese; NE Atlantic; Nickel; Niobium; Ocean Margin Exchange Project; OMEX; Potassium; Rubidium; Silicon; Sodium; Strontium; Thorium; Titanium; Uranium; Vanadium; X-ray fluorescence on flux diluted fused bead; X-ray fluorescence on pressed powder; Yttrium; Zinc; Zirconium
    Type: Dataset
    Format: text/tab-separated-values, 145 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 376 (1995), S. 208-208 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - In the Commentary by E. Nisbet and C. M. R. Fowler on 29 June 1995 (ref. 1) and in your Opinion piece in the same issue2, the significance of Brent Spar's cargo is measured by the yardstick of the discharge rate of metals by a natural system: the Broken Spur vent field on the Mid-Atlantic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 10 (2012): e1001234, doi:10.1371/journal.pbio.1001234.
    Description: Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
    Description: The ChEsSo research programme was funded by a NERC Consortium Grant (NE/DO1249X/1) and supported by the Census of Marine Life and the Sloan Foundation, and the Total Foundation for Biodiversity (Abyss 2100)(SVTH) all of which are gratefully acknowledged. We also acknowledge NSF grant ANT-0739675 (CG and TS), NERC PhD studentships NE/D01429X/1(LH, LM, CNR), NE/H524922/1(JH) and NE/F010664/1 (WDKR), a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews (PHBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 84 (2018): e02034-17, doi:10.1128/AEM.02034-17.
    Description: Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P−) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.
    Description: This work was funded by the University of Southampton Vice Chancellors Scholarship Award.
    Keywords: Thalassiosira pseudonana ; Phospholipid ; Sphingolipid ; Diatom ; Lipidomics ; Phosphorus ; Stress ; Limitation ; Substitution ; Biomarker
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Philosophical Transactions of the Royal Society A 374 (2016): 20160035, doi:10.1098/rsta.2016.0035.
    Description: Hydrothermal activity occurs in all ocean basins, releasing high concentrations of key trace elements and isotopes (TEIs) into the oceans. Importantly, the calculated rate of entrainment of the entire ocean volume through turbulently mixing buoyant hydrothermal plumes is so vigorous as to be comparable to that of deep-ocean thermohaline circulation. Consequently, biogeochemical processes active within deep-ocean hydrothermal plumes have long been known to have the potential to impact global-scale biogeochemical cycles. More recently, new results from GEOTRACES have revealed that plumes rich in dissolved Fe, an important micronutrient that is limiting to productivity in some areas, are widespread above mid-ocean ridges and extend out into the deep-ocean interior. While Fe is only one element among the full suite of TEIs of interest to GEOTRACES, these preliminary results are important because they illustrate how inputs from seafloor venting might impact the global biogeochemical budgets of many other TEIs. To determine the global impact of seafloor venting, however, requires two key questions to be addressed: (i) What processes are active close to vent sites that regulate the initial high-temperature hydrothermal fluxes for the full suite of TEIs that are dispersed through non-buoyant hydrothermal plumes? (ii) How do those processes vary, globally, in response to changing geologic settings at the seafloor and/or the geochemistry of the overlying ocean water? In this paper, we review key findings from recent work in this realm, highlight a series of key hypotheses arising from that research and propose a series of new GEOTRACES modelling, section and process studies that could be implemented, nationally and internationally, to address these issues.
    Description: his paper represents the outcomes from a series of break-out group discussions held at Chicheley Hall, UK, on 9 and 10 December 2015, as part of a Quantifying Fluxes and Processes in Trace-Metal Cycling in the Oceans science meeting sponsored by the Royal Society. C.R.G. also acknowledges further support from NSF grant OCE-1130870.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-23
    Description: The island of South Georgia is situated in the iron (Fe) depleted Antarctic Circumpolar Current of the Southern Ocean. Iron emanating from its shelf system fuels large phytoplankton blooms downstream of the island, but the actual supply mechanisms are unclear. To address this we present the first inventory of Fe, manganese (Mn) and aluminium (Al) in shelf sediments, pore waters and the water column in the vicinity of South Georgia, alongside data on zooplankton-mediated Fe cycling processes. The seafloor sediments were the main particulate Fe source to shelf bottom waters as indicated by Fe / Mn and Fe / Al ratios for shelf sediments and suspended particles in the water column. Less than 1 % of the total particulate Fe pool was leachable surface adsorbed (labile) Fe, and therefore potentially available to organisms. Pore waters formed the primary dissolved Fe (DFe) source to shelf bottom waters supplying 0.1–4 μmol DFe m−2 d−1. However, only 0.41 ± 0.26 μmol DFe m−2 d−1 was transferred to the surface mixed layer by vertical diffusive and advective mixing. Other trace metal sources to surface waters included glacial flour released by melting glaciers and zooplankton excretion processes. On average 6.5 ± 8.2 μmol m−2 d−1 of labile particulate Fe was supplied to the surface mixed layer via krill faecal pellets, with further DFe released by krill at around 1.1 ± 2.2 μmol m−2 d−1. The faecal pellets released by krill constituted of seafloor derived lithogenic material and settled algae debris, in addition to freshly ingested suspended phytoplankton specimen. The phytoplankton Fe requirement in the blooms ca. 1250 km downstream the island of South Georgia was 0.33 ± 0.11 μmol m−2 d−1, with the DFe supply by horizontal/vertical mixing, deep winter mixing and via aeolian dust estimated as ~ 0.12 μmol m−2 d−1. We suggest that additionally required DFe was provided through recycling of biogenically stored Fe following luxury Fe uptake by phytoplankton on the Fe rich shelf. This process would allow Fe to be retained in the surface mixed layer of waters downstream of South Georgia through continuous recycling and biological uptake, and facilitate the large scale blooms.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...