GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 415 (2002), S. 1011-1014 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Mixing of water masses from the deep ocean to the layers above can be estimated from considerations of continuity in the global ocean overturning circulation. But averaged over ocean basins, diffusivity has been observed to be too small to account for the global upward flux of water, and high ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-09
    Keywords: 177-1093; AGE; Color reflectance interval 650-750 nm wavelength; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg177; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 5772 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-09
    Keywords: 177-1094; AGE; Color reflectance interval 650-750 nm wavelength; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg177; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 2824 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-09
    Keywords: 177-1091; AGE; Color reflectance interval 650-750 nm wavelength; COMPCORE; Composite Core; DEPTH, sediment/rock; Joides Resolution; Leg177; Ocean Drilling Program; ODP; South Atlantic Ocean
    Type: Dataset
    Format: text/tab-separated-values, 4688 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Tsubouchi, Takamasa; Bacon, Sheldon; Aksenov, Yevgeny; Naveira Garabato, Alberto C; Beszczynska-Möller, Agnieszka; Hansen, Edmond H; de Steur, Laura; Curry, Beth; Lee, Craig M (2018): The Arctic Ocean seasonal cycles of heat and freshwater fluxes: observation-based inverse estimates. Journal of Physical Oceanography, https://doi.org/10.1175/JPO-D-17-0239.1
    Publication Date: 2024-03-02
    Description: This paper presents the first estimate of the seasonal cycle of ocean and sea ice heat and freshwater (FW) fluxes around the Arctic Ocean boundary. The ocean transports are estimated primarily using 138 moored instruments deployed in September 2005 – August 2006 across the four main Arctic gateways: Davis, Fram and Bering Straits, and the Barents Sea Opening (BSO). Sea ice transports are estimated from a sea ice assimilation product. Monthly velocity fields are calculated with a box inverse model that enforces mass and salt conservation. The volume transports in the four gateways in the period (annual mean ± 1 standard deviation) are -2.1±0.7 Sv in Davis Strait, -1.1±1.2 Sv in Fram Strait, 2.3±1.2 Sv in BSO and 0.7±0.7 Sv Bering Strait (1 Sv = 10^{6} m^ {3} s^{-1}). The resulting ocean and sea ice heat and FW fluxes are 175±48 TW and 204±85 mSv, respectively. These boundary fluxes accurately represent the annual means of the relevant surface fluxes. The ocean heat transport variability derives from velocity variability in the Atlantic Water layer and temperature variability in the upper part of the water column. The ocean FW transport variability is dominated by Bering Strait velocity variability. The net water mass transformation in the Arctic entails a freshening and cooling of inflowing waters by 0.62±0.23 in salinity and 3.74±0.76°C in temperature, respectively, and a reduction in density by 0.23±0.20 kg m^{-3}. The boundary heat and FW fluxes provide a benchmark data set for the validation of numerical models and atmospheric re-analysis products.
    Keywords: Arctic; AWI_PhyOce; pan-Arctic; Physical Oceanography @ AWI
    Type: Dataset
    Format: application/zip, 102 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Kemp, Alan E S; Grigorov, Ivo; Pearce, Richard B; Naveira Garabato, Alberto C (2010): Migration of the Antarctic Polar Front through the mid-Pleistocene transition: evidence and climatic implications. Quaternary Science Reviews, 29(17-18), 1993-2009, https://doi.org/10.1016/j.quascirev.2010.04.027
    Publication Date: 2024-01-09
    Description: The Antarctic Polar Front is an important biogeochemical divider in the Southern Ocean. Laminated diatom mat deposits record episodes of massive flux of the diatom Thalassiothrix antarctica beneath the Antarctic Polar Front and provide a marker for tracking the migration of the Front through time. Ocean Drilling Program Sites 1091, 1093 and 1094 are the only deep piston cored record hitherto sampled from the sediments of the circumpolar biogenic opal belt. Mapping of diatom mat deposits between these sites indicates a glacial-interglacial front migration of up to 6 degrees of latitude in the early/mid Pleistocene. The mid-Pleistocene transition marks a stepwise minimum 7° northward migration of the locus of the Polar Front sustained for about 450 kyr until an abrupt southward return to a locus similar to its modern position and further south than any mid-Pleistocene locus. This interval from a "900 ka event" that saw major cooling of the oceans and a d13C minimum through to the 424 ka Mid-Brunhes Event at Termination V is also seemingly characterised by 1) sustained decreased carbonate in the sub-tropical south Atlantic, 2) reduced strength of Antarctic deep meridional circulation, 3) lower interglacial temperatures and lower interglacial atmospheric CO2 levels (by some 30 per mil) than those of the last 400 kyr, evidencing less complete deglaciation. This evidence is consistent with a prolonged period lasting 450 kyr of only partial ventilation of the deep ocean during interglacials and suggests that the mechanisms highlighted by recent hypotheses linking mid-latitude atmospheric conditions to the extent of deep ocean ventilation and carbon sequestration over glacial-interglacial cycles are likely in operation during the longer time scale characteristic of the mid-Pleistocene transition. The cooling that initiated the "900 ka event" may have been driven by minima in insolation amplitude related to eccentricity modulation of precession that also affected low latitude climates as marked by threshold changes in the African monsoon system. The major thresholds in earth system behaviour through the mid-Pleistocene transition were likely governed by an interplay of the 100 kyr and 400 kyr eccentricity modulation of precession.
    Keywords: Ocean Drilling Program; ODP
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-20
    Description: Cruise data collected across three separate cruises MeRMEED-1 (WS16336; 1-7 December 2016), MeRMEED-2 (WS17305; 31 October - 10 November 2017) and MeRMEED-3 (WS18066; 4-16 March 2018). All cruises were aboard the R/V F. G. Walton Smith. Cruise region: 76.5W-77.2W, 26.15N-26.8N. Cruises consisted of zonal tethered vertical microstructure profiler (VMP) and vessel mounted acoustic Doppler current profiler (ADCP) surveys, yielding sections of the turbulent dissipation rate (units: W/kg) and zonal and meridional velocity (units: m/s). The VMP used was the tethered Rockland Scientific International VMP-2000, and the ADCP was a vessel-mounted RDI 75 kHz Ocean Surveyor ADCP configured and run through the University of Hawai'i Data Acquisition System (UHDAS) software suite. The VMP was also mounted with a CTD (conductivity-temperature-depth) sensor package, including SBE-3 and SBE-4 sensors. The CTD data was processed according to the manufacturer specifications, using recommended values for the cell thermal mass coefficients (alpha=0.03 and beta=7.0). Files are named as follows: WSxxxxx_CTD.mat, WSxxxxx_vmp_all.mat and WSxxxxx_os75nb.nc for CTD, VMP and ADCP data respectively. Mooring-based data is from two 75 kHz ADCPs, one upward facing and the other downward facing, mounted at approximately 700 m on the RAPID/MOCHA (Rapid Climate Change / Meridional Overturning Circulation and Heat flux Array) mooring WB1 at 76.8W and 26.5N. This configuration gave full depth meridional and zonal velocity profiles (units: m/s) in a water depth of approximately 1300 m. The data spanned December 2015 to March 2017. The data are binned in 16 m depth bins and are bin averaged into 1 hour time bins. File name: WB1_adcp_UV_1hr.mat.
    Keywords: Binary Object; cruise; CT; Event label; MeRMEED-1; MeRMEED-2; MeRMEED-3; mesoscale eddy; MOOR; Mooring; RAPID-MOCHA_WB1; Turbulent dissipation; Underway cruise track measurements; velocity; Walton Smith; WS16336; WS16336-track; WS17305; WS17305-track; WS18066; WS18066-track
    Type: Dataset
    Format: text/tab-separated-values, 10 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: This article presents an investigation of the global circulation and upwelling of subantarcticmodewater (SAMW), which is thought to be key in the supply of nutrients to support biological production over much of the world ocean excluding the North Pacific. The HYbrid isopycnic-cartesian Coordinate Ocean general circulation Model (HYCOM) is configured to simulate the global ocean circulation for time scales of up to centuries and a SAMW-tracking online tracer experiment is conducted. The tracer re-emergence fluxes across the mixed layer base effected by a range of physical mechanisms and by numerical mixing terms in HYCOM are diagnosed and discussed. For the global ocean north of 30°S, entrainment due to surface buoyancy loss and/or wind-induced mechanical stirring accounts for almost one third of the total tracer re-emergence. Ekman upwelling and shear-induced mixing are especially significant in the tropical oceans, and account for 19% and 18% of the total tracer re-emergence, respectively. There is substantial regional variation in the relative importance of the various upwellingmechanisms. Special attention is devoted to understanding the contrasting circulations of SAMW in the North Pacific and North Atlantic oceans. The modest penetration of SAMW into the North Pacific is found to arise from the comparatively light density level that the SAMW core resides at in the South Pacific Ocean, which results in its being captured by the Equatorial Undercurrent and prevents it from entering the western boundary current of the North Pacific. In the North Atlantic, a new conceptual model of SAMW circulation and re-emergence is proposed with application to nutrient supply to the regional upper ocean. The model formulates SAMW re-emergence as a sequence of distinct processes following the seasonal cycle of the thermocline as awater column circulates around the subtropical and subpolar gyres of the North Atlantic. ► Examine the SAMW circulation in global scale with online tracer experiment. ► Diagnose the SAMW upwelling fluxes across the mixed layer base. ► Examine the modest penetration of SAMW into the North Pacific. ► Propose a conceptual model with application to the North Atlantic nutrient supply.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-04-04
    Description: The West Spitsbergen Current, which flows northward along the western Svalbard continental slope, transports warm and saline Atlantic water (AW) into the Arctic Ocean. A combined analysis of highresolution seismic images and hydrographic sections across this current has uncovered the oceanographic processes involved in horizontal and vertical mixing of AW. At the shelf break, where a strong horizontal temperature gradient exists east of the warmest AW, isopycnal interleaving of warm AW and surrounding colder waters is observed. Strong seismic reflections characterize these interleaving features, with a negative polarity reflection arising from an interface of warm water overlying colder water. A seismic-derived sound speed image reveals the extent and lateral continuity of such interleaving layers. There is evidence of obliquely aligned internal waves emanating from the slope at 450–500 m. They follow the predicted trajectory of internal S2 tidal waves and can promote vertical mixing between Atlantic and Arctic-origin waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: We contend that ocean turbulent fluxes should be included in the list of Essential Ocean Variables (EOVs) created by the Global Ocean Observing System. This list aims to identify variables that are essential to observe to inform policy and maintain a healthy and resilient ocean. Diapycnal turbulent fluxes quantify the rates of exchange of tracers (such as temperature, salinity, density or nutrients, all of which are already EOVs) across a density layer. Measuring them is necessary to close the tracer concentration budgets of these quantities. Measuring turbulent fluxes of buoyancy (Jb), heat (Jq), salinity (JS) or any other tracer requires either synchronous microscale (a few centimeters) measurements of both the vector velocity and the scalar (e.g., temperature) to produce time series of the highly correlated perturbations of the two variables, or microscale measurements of turbulent dissipation rates of kinetic energy (ϵ) and of thermal/salinity/tracer variance (χ), from which fluxes can be derived. Unlike isopycnal turbulent fluxes, which are dominated by the mesoscale (tens of kilometers), microscale diapycnal fluxes cannot be derived as the product of existing EOVs, but rather require observations at the appropriate scales. The instrumentation, standardization of measurement practices, and data coordination of turbulence observations have advanced greatly in the past decade and are becoming increasingly robust. With more routine measurements, we can begin to unravel the relationships between physical mixing processes and ecosystem health. In addition to laying out the scientific relevance of the turbulent diapycnal fluxes, this review also compiles the current developments steering the community toward such routine measurements, strengthening the case for registering the turbulent diapycnal fluxes as an pilot Essential Ocean Variable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...