GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 1
    Type of Medium: Book
    Pages: S. 1569 - 1891 , Ill., graph. Darst
    Series Statement: Deep sea research 56.2009,19/20
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-02
    Description: The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.
    Keywords: DERIDGE; From Mantle to Ocean: Energy-, Material- and Life-cycles at Spreading Axes; M64/1; M64/1-114-ROV; M64/1-123-ROV; M64/1-124-GTV; M64/1-125-ROV; M64/1-130-ROV; M64/1-139-GTV; M64/1-141-ROV; M64/1-146-ROV; M68/1; M68/1-03-ROV; M68/1-07-ROV; M68/1-12-ROV; M68/1-20-ROV; MARSUED2; MARSUED3; Mephisto; Meteor (1986); Mid-Atlantic Ridge at 4-11°S; MULT; Multiple investigations; Remote operated vehicle; ROV; Shrimp_Farm; Sister_Peak; Tannenbaum; Television-Grab; TVG; Two_Boats
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The physiology and biochemistry of many taxa inhabiting deep-sea hydrothermal vents have been elucidated; however, the physicochemical factors controlling the distribution of these organisms at a given vent site remain an enigma after 20 years of research. The chemical speciation of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 371 (1994), S. 663-664 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] SIR - Rates of biological processes at deep-sea hydrothermal vents have been the subject of considerable research since the initial discovery of vent ecosystems in 1977. Previous studies have suggested that the environmental unpredictability, tran-sient nature and high biological produc-tion of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-26
    Description: Subduction of oceanic crust and the formation of volcanic arcs above the subduction zone are important components in Earth’s geological and geochemical cycles. Subduction consumes and recycles material from the oceanic plates, releasing fluids and gases that enhance magmatic activity, feed hydrothermal systems, generate ore deposits and nurture chemosynthetic biological communities. Among the first lavas to erupt at the surface from a nascent subduction zone are a type classified as boninites. These lavas contain information about the early stages of subduction, yet because most subduction systems on Earth are old and well-established, boninite lavas have previously only been observed in the ancient geological record. Here we observe and sample an active boninite eruption occurring at 1,200 m depth at the West Mata submarine volcano in the northeast Lau Basin, southwest Pacific Ocean. We find that large volumes of H2O, CO2 and sulphur are emitted, which we suggest are derived from the subducting slab. These volatiles drive explosive eruptions that fragment rocks and generate abundant incandescent magma-skinned bubbles and pillow lavas. The eruption has been ongoing for at least 2.5 years and we conclude that this boninite eruption is a multi-year, low-mass-transfer-rate eruption. Thus the Lau Basin may provide an important site for the long-term study of submarine volcanic eruptions related to the early stages of subduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 1 (2007): 30-41.
    Description: The discovery of hydrothermal vents and the unique, often endemic fauna that inhabit them represents one of the most extraordinary scientific discoveries of the latter twentieth century. Not surprisingly, after just 30 years of study of these remarkable—and extremely remote—systems, advances in understanding the animals and microbial communities living around hydrothermal vents seem to occur with every fresh expedition to the seafloor. On average, two new species are described each month—a rate of discovery that has been sustained over the past 25–30 years. Furthermore, the physical, geological, and geochemical features of each part of the ridge system and its associated hydrothermal-vent structures appear to dictate which novel biological species can live where. Only 10 percent of the ridge system has been explored for hydrothermal activity to date (Baker and German, 2004), yet we find different diversity patterns in that small fraction. While it is well known that species composition varies along discrete segments of the global ridge system, this “biogeographic puzzle” has more pieces missing than pieces in place.
    Description: E. Ramirez-Llodra is supported by the ChEss-Census of Marine Life program (A.P. Sloan Foundation), which is kindly acknowledged. C.R. German also acknowledges support from ChEss- Census of Marine Life and further support from the Natural Environment Research Council (UK) and from the US National Science Foundation (NSF) and National Oceanic and Atmospheric Administration (NOAA). T. Shank acknowledges support from NSF, the US National Aeronautic and Space Administration Astrobiology Program, NOAA-Ocean Exploration, and the Deep-Ocean Exploration Institute at the Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 4 (2007): 52-61.
    Description: Human-occupied submersibles, towed vehicles, and tethered remotely operated vehicles (ROVs) have traditionally been used to study the deep seafloor. In recent years, however, autonomous underwater vehicles (AUVs) have begun to replace these other vehicles for mapping and survey missions. AUVs complement the capabilities of these pre-existing systems, offering superior mapping capabilities, improved logistics, and better utilization of the surface support vessel by allowing other tasks such as submersible operations, ROV work, CTD stations, or multibeam surveys to be performed while the AUV does its work. AUVs are particularly well suited to systematic preplanned surveys using sonars, in situ chemical sensors, and cameras in the rugged deep-sea terrain that has been the focus of numerous scientific expeditions (e.g., those to mid-ocean ridges and ocean margin settings). The Autonomous Benthic Explorer (ABE) is an example of an AUV that has been used for over 20 cruises sponsored by the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA) Office of Ocean Exploration (OE), and international and private sources. This paper summarizes NOAA OE-sponsored cruises made to date using ABE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, 1 (2010): 212-213.
    Description: Seamounts are fascinating natural ocean laboratories that inform us about fundamental planetary and ocean processes, ocean ecology and fisheries, and hazards and metal resources. The more than 100,000 large seamounts are a defining structure of global ocean topography and biogeography, and hundreds of thousands of smaller ones are distributed throughout every ocean on Earth.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2013. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Policy 49 (2014):146-154, doi:10.1016/j.marpol.2013.11.017.
    Description: The United Nations General Assembly in 2006 and 2009 adopted resolutions that call for the identification and protection of vulnerable marine ecosystems (VMEs) from significant adverse impacts of bottom fishing. While general criteria have been produced, there are no guidelines or protocols that elaborate on the process from initial identification through to the protection of VMEs. Here, based upon an expert review of existing practices, a 10-step framework is proposed: 1) Comparatively assess potential VME indicator taxa and habitats in a region; 2) determine VME thresholds; 3) consider areas already known for their ecological importance; 4) compile information on the distributions of likely VME taxa and habitats, as well as related environmental data; 5) develop predictive distribution models for VME indicator taxa and habitats; 6) compile known or likely fishing impacts; 7) produce a predicted VME naturalness distribution (areas of low cumulative impacts); 8) identify areas of higher value to user groups; 9) conduct management strategy evaluations to produce trade-off scenarios; 10) review and re-iterate, until spatial management scenarios are developed that fulfil international obligations and regional conservation and management objectives. To date, regional progress has been piecemeal and incremental. The proposed 10-step framework combines these various experiences into a systematic approach.
    Description: The New Zealand Ministry of Science and Innovation (now known as the Ministry of Business, Innovation and Employment) provided funding for the workshop
    Keywords: High seas ; Vulnerable marine ecosystems ; Systematic conservation planning ; ABNJ ; VME ; RFMO
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 100 (2015): 21-33, doi:10.1016/j.dsr.2015.01.010.
    Description: Most of our knowledge about deep-sea habitats is limited to bathyal (200–3000 m) and abyssal depths (3000–6000 m), while relatively little is known about the hadal zone (6000–11,000 m). The basic paradigm for the distribution of deep seafloor biomass suggests that the reduction in biomass and average body size of benthic animals along depth gradients is mainly related to surface productivity and remineralisation of sinking particulate organic carbon with depth. However, there is evidence that this pattern is somewhat reversed in hadal trenches by the funnelling of organic sediments, which would result in increased food availability along the axis of the trenches and towards their deeper regions. Therefore, despite the extreme hydrostatic pressure and remoteness from the pelagic food supply, it is hypothesized that biomass can increase with depth in hadal trenches. We developed a numerical model of gravitational lateral sediment transport along the seafloor as a function of slope, using the Kermadec Trench, near New Zealand, as a test environment. We propose that local topography (at a scale of tens of kilometres) and trench shape can be used to provide useful estimates of local accumulation of food and, therefore, patterns of benthic biomass. Orientation and steepness of local slopes are the drivers of organic sediment accumulation in the model, which result in higher biomass along the axis of the trench, especially in the deepest spots, and lower biomass on the slopes, from which most sediment is removed. The model outputs for the Kermadec Trench are in agreement with observations suggesting the occurrence of a funnelling effect and substantial spatial variability in biomass inside a trench. Further trench surveys will be needed to determine the degree to which seafloor currents are important compared with the gravity-driven transport modelled here. These outputs can also benefit future hadal investigations by highlighting areas of potential biological interest, on which to focus sampling effort. Comprehensive exploration of hadal trenches will, in turn, provide datasets for improving the model parameters and increasing predictive power.
    Description: MCI would also like to thank the University of Southampton, the Natural Environment Research Council (NERC, grant number NEW332003) and the Institute of Marine Engineering, Science & Technology (IMarEST), for supporting his research towards a PhD. We are grateful for the support provided by the National Science Foundation (OCE-1131620 to TMS, JCD, and PHY) to the Hadal Ecosystem Studies (HADES) project to which this paper forms a contribution. Support also came from the Natural Environment Research Council (NERC) and its Marine Environmental Mapping Programme (MAREMAP).
    Keywords: Hadal ecology ; Sediment ; Gravitational transport ; Topography ; Benthic biomass ; Kermadec Trench
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...