GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
  • 12
    Publication Date: 2019-02-01
    Description: Recently, several studies indicated that species from the Ponto-Caspian region may be evolutionarily predisposed to become nonindigenous species (NIS); however, origin of NIS established in different regions has rarely been compared to confirm these statements. More importantly, if species from certain area/s are proven to be better colonizers, management strategies to control transport vectors coming from those areas must be more stringent, as prevention of new introductions is a cheaper and more effective strategy than eradication or control of established NIS populations. To determine whether species evolved in certain areas have inherent advantages over other species in colonizing new habitats, we explored NIS established in the North and Baltic Seas and Great Lakes–St. Lawrence River regions—two areas intensively studied in concern to NIS, highly invaded by Ponto-Caspian species and with different salinity patterns (marine vs. freshwater). We compared observed numbers of NIS in these two regions to expected numbers of NIS from major donor regions. The expected numbers were calculated based on the available species pool from donor regions, frequency of shipping transit, and an environmental match between donor and recipient regions. A total of 281 NIS established in the North and Baltic Seas and 188 in the Great Lakes–St. Lawrence River. Ponto-Caspian taxa colonized both types of habitats, saltwater areas of the North and Baltic Seas and freshwater of the Great Lakes–St. Lawrence River, in much higher numbers than expected. Propagule pressure (i.e., number of introduced individuals or introduction effort) is of great importance for establishment success of NIS; however in our study, either shipping vector or environmental match between regions did not clarify the high numbers of Ponto-Caspian taxa in our study areas. Although we cannot exclude the influence of other transport vectors, our findings suggest that the origin of the species plays an important role for the predisposition of successful invaders.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-10-27
    Description: Over the last two centuries human activities significantly changed the Earth system. Atmospheric CO2 concentrations were increased by ~25% in only 50 years (1965 to 2015) through combustion of fossil fuels and changes in land use. Consequences of these activities are a warming climate and the ‘acidification’ of the world oceans. A doubling of surface ocean carbon dioxide- (CO2) and proton- (H+) and a 40% decrease of the carbonate ion (CO32-) concentrations until the end of this century will probably affect many marine organisms. Due to low temperatures, the Arctic Surface Ocean will be one of the first to experience mean annual corrosive conditions for calcified organisms. This makes the Arctic Ocean a bellwether for global impacts of ocean acidification (OA) on marine life. Biogenic calcium carbonate often establishes ecological functions like being the fundament for species rich habitats in the case of hermatypic corals and crustose coralline algae (CCA) or impacting global carbon cycling embodied by coccolithophores, foraminifera and thecosome pteropods. The marine carbon cycle influences the destination of human CO2 emissions and the development of the global climate. Therefore, the ecological importance of CCA and pteropods, their involvement in the marine carbon cycle and their anticipated vulnerability to OA call for research on their fate in the future ocean. This doctoral thesis investigates the effects of warming and ocean acidification on growth, calcification, dissolution, corrosion and survival of Arctic calcifying keystone species Lithothamnion glaciale (CCA) and Limacina helicina and retroversa (thecosome pteropods).
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-03-11
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-02-01
    Description: Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.
    Type: Article , PeerReviewed
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-02-01
    Description: Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July–September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  (PhD/ Doctoral thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 130, XIX pp
    Publication Date: 2022-01-17
    Description: Climate Engineering (CE) as an option to prevent dangerous climate change has reached the political debate. For a well informed decision on CE research and deployment in the future, work towards a comprehensive, comparative assessment is needed. In the first part of this thesis, climate impacts and side effects of an artificial Arctic ocean albedo modification scheme are studied. The second part of this thesis presents a parameter sensitivity study on the uncertainty in the response of transpiration to CO2 and implications for climate change. Is the application of indicators used for the historical time period valid for a comprehensive assessment of future climate change? In the third part of the thesis we introduce a methodological approach to systematically evaluate correlation matrices, identifying robust indicators from Earth system variables, to be used in a natural-science based assessment. In the fourth part of this thesis this method is applied to three exemplary CE scenarios: Large-scale afforestation, ocean alkalinity enhancement and solar radiation management. Changes in correlation patterns provide information on which variables might become more relevant under CE scenarios. To enable a comprehensive comparison of the three scenarios, the common correlation matrix is systematically evaluated to identify an indicator set. A preliminary evaluation of the three scenarios based on these indicators remains inconclusive. If the indicators are further aggregated into a metric to reduce the complexity, a ranking of the different scenarios becomes evident. Given all assumptions, we find that overall the RCP4.5 scenario performs ’best’ in staying close to todays climate state. Solar Radiation Management is identified as the ’best’ CE scenario, followed by Ocean Alkalinity Enhancement and Large-scale Afforestation. These analyses advance the natural-science based assessment of CE, which is essential prior to a decision making process.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-02-01
    Description: Recent research from the Shatsky Rise in the western Pacific Ocean provides new insights on the formation and evolution of this oceanic plateau as well as tests of mantle models to explain anomalous large igneous province (LIP) volcanism. Recent Shatsky Rise studies cored the igneous pile (Integrated Ocean Drilling Program Expedition 324), imaged the interior with seismic refraction and multichannel seismic reflection data, and mapped magnetic anomalies adjacent to the plateau to provide new constraints on its tectonic history. Coring data show that Tamu Massif, the largest edifice within Shatsky Rise, is characterized by massive sheet flows, similar to flows caused by voluminous eruptions in continental flood basalts. Core data also indicate that the massive eruptions waned as the plateau evolved and smaller edifices were built. Seismic data show intrabasement reflectors within Tamu Massif that indicate volcanism from its center, indicating that this is an enormous shield volcano with abnormally low flank slopes and thick crust (~ 30 km). Paleomagnetic data record minimal geomagnetic field variations, consistent with the inference of massive, rapid volcanism. Altogether, the physical picture indicates that Shatsky Rise was built by massive, rapid eruptions that formed enormous volcanoes. Geochronologic data support the previously inferred age progression, with the volcanic massifs formed along the trace of a triple junction starting from Tamu Massif and becoming progressively younger to the northeast. These data weaken support for rapid emplacement because they show that the last eruptions atop Tamu Massif encompassed several million years between the final massive flows as well as a long hiatus of ~ 15 Myr until late stage eruptions that formed a summit ridge. They may also indicate that the last eruptions on Tamu and Ori massifs occurred while the triple junction was hundreds of kilometers distant. Furthermore, magnetic anomaly data indicate that the plate boundary reorganization associated with Shatsky Rise formation occurred several million years prior to the first Tamu Massif eruptions, suggesting plate boundary control of Shatsky Rise initiation. Geochemical and isotopic data show that Shatsky Rise rocks are variably enriched, with the majority of lavas being similar to mid-ocean ridge basalts (MORB). However, the data indicate deeper (〉 30 km) and higher partial degree of melting (15–23%) as compared with normal MORB. Melting models indicate that the magma experienced a mantle temperature anomaly, albeit only a small one (~ 50 °C). Some lava compositions suggest the involvement of recycled subducted slab material. Recent investigations of Shatsky Rise initially envisaged a competition between two end-member models: the thermal plume head and the fertile mantle melting beneath plate extension (aka, plate model). Both hypotheses find support from new data and interpretations, but both do not fit some data. As a result, neither model can be supported without reservation. Noting that most basaltic oceanic plateaus have formed at triple junctions or divergent plate boundaries, we suggest that this dichotomy is artificial. Oceanic plateau volcanism is anomalous and focused at spreading ridges for reasons that are still poorly understood, mainly owing to uncertainties about mantle convection and geochemical reservoirs. Shatsky Rise investigations have vastly improved our understanding of the formation of this oceanic plateau, but highlight that important work remains to understand the underlying nature of this volcanism.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-03-11
    Description: The Baltic Sea is a dynamic environment responding to various drivers operating at different temporal and spatial scales. In response to climate change, the Baltic Sea is warming and the frequency of extreme climatic events is increasing (Lima & Wethey 2012, BACC 2008, Poloczanska et al. 2007). Coastal development, human population growth and globalization intensify stressors associated with human activities, such as nutrient loading, fisheries and proliferation of invasive and bloom-forming species. Such abrupt changes have unforeseen consequences for the biodiversity and the function of food webs and may result in loss of ecological key species, alteration and fragmentation of habitats. To mitigate undesired effects on the Baltic ecosystem, an efficient marine management will depend on the understanding of historical and current drivers, i.e. physical and chemical environmental conditions and human activities that precipitate pressures on the natural environment. This task examined a set of key interactions of selected natural and anthropogenic drivers in space and time, identified in Task 3.1 as well as WP1 and WP2 (e.g. physico-chemical features vs climate forcing; eutrophication vs oxygen deficiency vs bio-invasions; fisheries vs climate change impacts) by using overlay-mapping and sensitivity analyses. The benthic ecosystem models developed under Task 2.1 were used to investigate interactions between sea temperature and eutrophication for various depth strata in coastal (P9) and offshore areas (P1) of the Baltic Sea. This also included investigation on how the frequency and magnitude of deep-water inflow events determines volume and variance of salinity and temperature under the halocline, deep-water oxygen levels and sediment fluxes of nutrients, using observations and model results from 1850 to present (P1, P2, P6, P9, P12). The resulting synthesis on the nature and magnitude of different driver interactions will feed into all other tasks of this WP3 and WP2/WP4. Moreover, the results presented in this report improve the process-based and mechanistic understanding of environmental change in the Baltic Sea ecosystem, thereby fostering the implementation of the Marine Strategy Framework Directive.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...