GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (66 Seiten = 4 MB) , Illustrationen, Graphen
    Edition: 2021
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Casties, Isabel; Seebens, Hanno; Briski, Elizabeta (2016): Importance of geographic origin for invasion success: A case study of the North and Baltic Seas versus the Great Lakes-St. Lawrence River region. Ecology and Evolution, 6(22), 8318-8329, https://doi.org/10.1002/ece3.2528
    Publication Date: 2023-01-13
    Description: List of non-indigenous species (NIS) established in the Great Lakes-St. Lawrence River region and the North and Baltic Seas region, their geographic origin, and taxonomic assignment. Asterisks mark the NIS that occur in both the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. GL, SL, NW, NE, SW and SE denote the Great Lakes, St. Lawrence River, north-west, north-east, south-west, and south-east, respectively. Eurasia represents inland freshwaters except Yangtze River, Indo-Pacific represents Indian Ocean and the archipelago of Indonesia, Malaysia, and Pilipinas, North America (N America) represents inland freshwaters except the Laurentian Great Lakes, St. Lawrence and Mississippi Rivers, while Australia, New Zealand, Africa and South America (S America) cover all inland freshwaters in these areas.
    Type: Dataset
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet, 56.2 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Casties, Isabel; Briski, Elizabeta (2019): Life history traits of aquatic non-indigenous species: freshwater vs. marine habitats. Aquatic Invasions, 14(4), 566-581, https://doi.org/10.3391/ai.2019.14.4.01
    Publication Date: 2023-02-12
    Description: 7 Life history traits of NIS of the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. References for life history traits of NIS of the North and Baltic Seas and the Great Lakes-St. Lawrence River regions.
    Keywords: Area/locality; Behaviour; Class; Comment; Dormancy; Kingdom; Number of broods; Phylum; Predator; Reference of data; Regeneration; Reproduction; Species; Strategy; Type
    Type: Dataset
    Format: text/tab-separated-values, 12996 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Casties, Isabel; Clemmesen, Catriona; Briski, Elizabeta (2019): Environmental tolerance of three gammarid species with and without invasion record under current and future global warming scenarios. Diversity and Distributions, 25(4), 603-612, https://doi.org/10.1111/ddi.12856
    Publication Date: 2024-01-26
    Description: To determine environmental tolerance of native species and related NIS under current and future global warming scenarios of the Baltic Sea, we conducted common garden experiments to test temperature tolerance of three euryhaline gammarid species: one Baltic (Gammarus oceanicus), one Ponto‐Caspian (Pontogammarus maeoticus) and one North American species (Gammarus tigrinus) in two different salinities.
    Keywords: DATE/TIME; Day of experiment; Experiment; Experimental treatment; Number of individuals; Species; Standard deviation; Survival; Treatment: temperature
    Type: Dataset
    Format: text/tab-separated-values, 7722 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wangensteen, Owen S; Dupont, Sam; Casties, Isabel; Turon, Xavier; Palacín, Creu (2013): Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. Journal of Experimental Marine Biology and Ecology, 449, 304-311, https://doi.org/10.1016/j.jembe.2013.10.007
    Publication Date: 2024-03-15
    Description: We studied the effects of temperature and pH on larval development, settlement and juvenile survival of a Mediterranean population of the sea urchin Arbacia lixula. Three temperatures (16, 17.5 and 19 °C) were tested at present pH conditions (pHT 8.1). At 19 °C, two pH levels were compared to reflect present average (pHT 8.1) and near-future average conditions (pHT 7.7, expected by 2100). Larvae were reared for 52-days to achieve the full larval development and complete the metamorphosis to the settler stage. We analyzed larval survival, growth, morphology and settlement success. We also tested the carry-over effect of acidification on juvenile survival after 3 days. Our results showed that larval survival and size significantly increased with temperature. Acidification resulted in higher survival rates and developmental delay. Larval morphology was significantly altered by low temperatures, which led to narrower larvae with relatively shorter skeletal rods, but larval morphology was only marginally affected by acidification. No carry-over effects between larvae and juveniles were detected in early settler survival, though settlers from larvae reared at pH 7.7 were significantly smaller than their counterparts developed at pH 8.1. These results suggest an overall positive effect of environmental parameters related to global change on the reproduction of A. lixula, and reinforce the concerns about the increasing negative impact on shallow Mediterranean ecosystems of this post-glacial colonizer.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Arbacia lixula; Bicarbonate ion; Body length; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Distance; Echinodermata; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Identification; Incubation duration; Individuals; Laboratory experiment; Larvae; Length; Mortality/Survival; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Replicate; Reproduction; Salinity; Single species; Species; Survival; Temperate; Temperature; Temperature, water; Temperature, water, standard deviation; Tossa_de_Mar; Treatment; Width; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 20913 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Melzner, Frank; Stange, Paul; Trübenbach, Katja; Thomsen, Jörn; Casties, Isabel; Panknin, Ulrike; Gorb, Stanislav N; Gutowska, Magdalena A (2011): Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE, 6(9), e24223, https://doi.org/10.1371/journal.pone.0024223
    Publication Date: 2024-03-15
    Description: Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310-350 cells mL-1 vs. 1600-2000 cells mL-1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.
    Keywords: AIRICA analyzer (Miranda); Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Carbon dioxide, partial pressure, standard deviation; Cell density; Cell density, standard deviation; Coast and continental shelf; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Laboratory experiment; Measured; Mollusca; Mytilus edulis; Mytilus edulis, dissolution, nacre; Mytilus edulis, dissolution, nacre, standard deviation; Mytilus edulis, shell length; Mytilus edulis, shell length, standard deviation; Mytilus edulis, shell mass growth; Mytilus edulis, shell mass growth, standard deviation; Mytilus edulis, somatic mass growth; Mytilus edulis, somatic mass growth, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Precision scale (Sartorius TE64, Sartorius AG, Germany); Salinity; Salinity, standard deviation; Single species; Temperate; Temperature, standard deviation; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 340 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Thomsen, Jörn; Casties, Isabel; Pansch, Christian; Körtzinger, Arne; Melzner, Frank (2013): Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biology, 19(4), 1017-1027, https://doi.org/10.1111/gcb.12109
    Publication Date: 2024-03-15
    Description: Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and 〉3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.
    Keywords: Acid-base regulation; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Baltic Sea; Benthic animals; Benthos; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calcite saturation state, standard deviation; Calcium carbonate, dry weight; Calcium carbonate, dry weight, standard deviation; Calcium carbonate, mass; Calcium carbonate, standard deviation; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, partial pressure; Charophyta; Coast and continental shelf; Coverage; Coverage, standard deviation; Date; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haemolymph, pH; Haemolymph, pH, standard deviation; Identification; Laboratory experiment; Length; Length, standard deviation; Location; Mass; Mass, standard deviation; Mollusca; Mytilus edulis; Nitrogen, organic, particulate; Nitrogen, organic, particulate, standard deviation; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Salinity; Salinity, standard deviation; Shell length; Single species; Species; Station label; Survival; Survival rate, standard deviation; Temperate; Temperature, standard deviation; Temperature, water; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 7211 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-17
    Description: List of non-indigenous species (NIS) established in the Great Lakes-St. Lawrence River region and the North and Baltic Seas region, their geographic origin, and taxonomic assignment. Asterisks mark the NIS that occur in both the North and Baltic Seas and the Great Lakes-St. Lawrence River regions. GL, SL, NW, NE, SW and SE denote the Great Lakes, St. Lawrence River, north-west, north-east, south-west, and south-east, respectively. Eurasia represents inland freshwaters except Yangtze River, Indo-Pacific represents Indian Ocean and the archipelago of Indonesia, Malaysia, and Pilipinas, North America (N America) represents inland freshwaters except the Laurentian Great Lakes, St. Lawrence and Mississippi Rivers, while Australia, New Zealand, Africa and South America (S America) cover all inland freshwaters in these areas.
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Macmillan Publishers Limited
    In:  EPIC3Nature Climate Change, Macmillan Publishers Limited, 3, pp. 1044-1049, ISSN: 1758-678X
    Publication Date: 2019-07-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-02-01
    Description: Recently, several studies indicated that species from the Ponto-Caspian region may be evolutionarily predisposed to become nonindigenous species (NIS); however, origin of NIS established in different regions has rarely been compared to confirm these statements. More importantly, if species from certain area/s are proven to be better colonizers, management strategies to control transport vectors coming from those areas must be more stringent, as prevention of new introductions is a cheaper and more effective strategy than eradication or control of established NIS populations. To determine whether species evolved in certain areas have inherent advantages over other species in colonizing new habitats, we explored NIS established in the North and Baltic Seas and Great Lakes–St. Lawrence River regions—two areas intensively studied in concern to NIS, highly invaded by Ponto-Caspian species and with different salinity patterns (marine vs. freshwater). We compared observed numbers of NIS in these two regions to expected numbers of NIS from major donor regions. The expected numbers were calculated based on the available species pool from donor regions, frequency of shipping transit, and an environmental match between donor and recipient regions. A total of 281 NIS established in the North and Baltic Seas and 188 in the Great Lakes–St. Lawrence River. Ponto-Caspian taxa colonized both types of habitats, saltwater areas of the North and Baltic Seas and freshwater of the Great Lakes–St. Lawrence River, in much higher numbers than expected. Propagule pressure (i.e., number of introduced individuals or introduction effort) is of great importance for establishment success of NIS; however in our study, either shipping vector or environmental match between regions did not clarify the high numbers of Ponto-Caspian taxa in our study areas. Although we cannot exclude the influence of other transport vectors, our findings suggest that the origin of the species plays an important role for the predisposition of successful invaders.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...