GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, (2009), 1872-6151
    In: year:2009
    In: extent:12
    Description / Table of Contents: The role of methane in the global bio-geo-system is one of the most important issues of present-day research. Cold seeps, where methane leaves the seafloor and enters the water column, provide valuable evidence of subsurface methane paths. Within the New Vents project we investigate cold seeps and seep structures at the Hikurangi Margin, east of New Zealand. In the area of Opouawe Bank, offshore the southern tip of the North Island, numerous extremely active seeps have been discovered. High-resolution seismic sections show a variety of seep structures. We see seismic chimneys either characterised by high-amplitude reflections or by acoustic turbidity and faults presumably acting as fluid pathways. The bathymetric expression of the seeps also varies: There are seeps exhibiting a flat seafloor as well as a seep located in a depression and small mounds. The images of the 3.5 kHz Parasound system reveal the near-surface structure of the vent sites. While high-amplitude spots within the uppermost 50 m below the seafloor (bsf) are observed at the majority of the seep structures, indicating gas hydrate and/or authigenic carbonate formations with an accumulation of free gas underneath, a few seep structures are characterised by the complete absence of reflections, indicating a high gas content without the formation of a gas trap by hydrates or carbonates. The factors controlling seep formation have been analysed with respect to seep location, seep structure, water depth, seafloor morphology, faults and gas hydrate distribution. The results indicate that the prevailing structural control for seep formation at Opouawe Bank is the presence of numerous minor faults piercing the base of the gas hydrate stability zone.
    Type of Medium: Online Resource
    Pages: 12 , graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Univ. Hamburg
    Publication Date: 2021-03-29
    Description: The Levantine Basin - a seismic investigation of the crustal structure and the evolution of the Messinian evaporites ABSTRACT This work presents an analysis of the crustal structure of the Levantine Basin, based on refraction seismic and gravity data, and an analysis of the evolution of the Messinian evaporites, based on reflection seismic data. Forward and inverse modelling of refraction seismic traveltimes along two profiles yielded 2-D velocity-depth-profiles. Gravity modelling along these profiles provided further information on the crustal structure. A great number of reflection seismic profiles was used for the analysis of the Messinian evaporites, which allowed an exhaustive investigation of the geometry of the evaporite layers, depositional phases of the evaporites and of their structural evolution. The Levantine Basin is located in the Southeastern Mediterranean Sea. The basin and its margin are key areas for the understanding of the geodynamic evolution of the Eastern Mediterranean. The opening of the Levantine Basin is closely related to the opening of the Neo-Tethys. Many geodynamic reconstructions of this area have been developed, but the key question, the origin of the crust, remained open. The Levantine Basin is also a world class site for studying the initial stages of salt tectonics driven by differential sediment load. The Messinian evaporites are comparatively young (deposited during the Messinian Salinity Crisis 5.9 - 5.3 Ma ago), the sediment load varies along the basin margin, they are hardly tectonically overprinted, and the geometry of the basin and the overburden is well-defined...
    Description: thesis
    Keywords: 550 ; TSF 000 ; VAE 820 ; VEF 000 ; Südeuropa und Mittelmeergebiet {Geophysik} ; Sedimentationsbecken als Erdkrustentypen {Geologie} ; Südeuropa und Mittelmeergebiet {Geologie}
    Language: English
    Type: monograph , publishedVersion
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...