GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
Years
  • 11
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 261(2009), 1/4, Seite 128-137, 1872-6151
    In: volume:261
    In: year:2009
    In: number:1/4
    In: pages:128-137
    Description / Table of Contents: Isis mud volcano is located on the upper slope of the Nile deep-sea fan and has been described as the surface expression of a deep-seated gas chimney [Loncke, L., Gaullier, V., Mascle, J., Vendeville, B., 2002. Shallow structure of the Nile deep-sea fan: interactions between structural heritage and salt tectonics; consequences on sedimentary dispersal. In: CIESM (Ed.), Turbidite systems and deep-sea fans of the Mediterranean and the Black seas. CIESM Workshop Series. vol. 17. Monaco]. Detailed geothermal and geochemical investigations of Isis MV have been carried out during the NAUTINIL (2003) and MIMES (2004) cruises within the framework of the Euro-margins/Mediflux project. Sediment temperatures of more than 40°C at 10 m below the seafloor at the center of the mud volcano indicate an exceptionally high level of activity. Rapidly decreasing temperature gradients away from the center support the hypothesis of a dominantly axisymmetric functioning of Isis MV. The microbathymetry along dive tracks of the submersible Nautile reveals the presence of terraces and shows that the temperature gradients at shallow sediment depth follow the morphology. At the center, porewater profiles are characterized by a rapid decrease of chlorinity within the uppermost meter of the sediments, whereas the chlorinity of cores taken at short distances away is equal to bottom water values. Applying simple analytical models to the data provides evidence of recent mud volcano activity but no straightforward explanation of the observed anomalies, which points to a transient regime of variable fluid flow, possibly accompanied by episodic mud eruptions. Numerical modeling suggests that rapid cooling of the sediment column and downward progression of the sharp decrease in porewater chlorinity observed between the two cruises is related to episodic infiltration of bottom seawater into the mud.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 259(2009), 1/4, Seite 47-58, 1872-6151
    In: volume:259
    In: year:2009
    In: number:1/4
    In: pages:47-58
    Description / Table of Contents: Continental shelves represent areas of highest economical and ecological importance. Nevertheless, these sedimentary systems remain poorly understood due to a complex interplay of various factors and processes which results in highly individual construction schemes. Previous studies of sedimentary shelf systems have mainly focused on a limited number of cores, retrieved from Holocene fine-grained depocentres. As such, the relation between shelf architecture and sedimentary history remains largely obscure. Here, we present new data from the NW Iberian shelf comprising shallow-seismic profiles, a large number of sediment cores, and an extended set of radiocarbon dates to reveal the Late Quaternary evolution of a low-accumulation shelf system in detail. On the NW Iberian shelf, three main seismic units are identified. These overly a prominent erosional unconformity on top of the basement. The lowermost Unit 1 is composed of maximal 75-m thick, Late Tertiary to Pleistocene deposits. The youngest sediments of this unit are related to the last glacial sea-level fall. Unit 2 was controlled by the deglacial sea-level rise and shows a maximum thickness of 15 m. Finally, Unit 3 comprises deposits related to the late stage of sea-level rise and the modern sea-level highstand with a thickness of 4 m in mid-shelf position. Two pronounced seismic reflectors separate these main units from each other. Their origin is related to (1) exposure and ravinement processes during lower sea level, and (2) to reworking and re-deposition of coarse sediments during subsequent sea-level rise. According to the sediment core ground-truthing, sediments of the Late Tertiary to Pleistocene unit predominantly display homogenous fine sands with exceptional occurrences of palaeosols that indicate an ancient exposure surface. Fine sands which were deposited in the run of the last sea-level rise show a time-transgressive retrogradational development. The seismic reflectors, bounding the individual units, appear in the cores as 0.1 to 1-m thick deposits consisting either of shell gravels or siliceous coarse sands with gravels. The modern sea-level highstand stage is characterised by zonal deposition of mud forming a mud belt in mid-shelf position, and sediment starvation on outer shelf zones. Radiocarbon ages indicate that this mud belt was the main depocentre for river-supplied fine material on the NW Iberian shelf at least over the past 5.32 ka BP. The initial onset of this depocentre is proposed to be related to a shift in the balance between rate of sea-level rise and amount of terrigenous sediment supply. Various other stratigraphical shelf reconstructions reveal analogies in architecture which indicate that timing and shaping of the individual units on low-accumulation shelves is fundamentally controlled by eustatic sea-level changes. Other factors of local importance such as differential elevation of the basement and the presence of morphological barriers formed by rocky outcrops on the seafloor have additionally modifying influence on the sedimentary processes.
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 271(2010), 1/2, Seite 44-54, 1872-6151
    In: volume:271
    In: year:2010
    In: number:1/2
    In: pages:44-54
    Description / Table of Contents: In this study we aim on a reconstruction of mechanisms and kinematics of slope-failure and mass-movement processes along the northeastern slope of Crete in the Hellenic forearc, eastern Mediterranean. Here, subsidence of the forearc basin and the uplift of the island of Crete cause ongoing steepening of the slope in-between. The high level of neotectonic activity in this region is expected to exert a key role in slope-failure development. Newly acquired reflection seismic data from the upper slope region reveal an intact sediment cover while the lower slope is devoid of both intact strata and mass-transport deposits (MTDs). In a mid-slope position, however, we found evidence for a not, vert, similar 4-km3-sized landslide complex that comprises several MTDs from translational transport of coherent sediment bodies over short distances. Morphometric analysis of these MTDs and their source scars indicates that this part of the northeast Cretan slope can be characterized as a cohesive slope. Furthermore, we reconstruct retrogressive development for this complex and determine a critical slope angle for both pre-conditioning of failure and subsequent landslide deposition near source scars. Consequently, data imply that the investigated shallower slope is stable due to low angles in the order of 3°, whereas 5°-inclined mid-slope portions favour both slope destabilization and landslide deposition. The failed mid-slope parts are dominated by sediment truncations from faults almost correlating with the orientation of head- and sidewalls of scars. We suggest that cohesive landslides and MTDs are generated and preserved, respectively, in such critical slope regions. If once generated, cohesive landslides reach the lower slope further downslope that exceeds the threshold gradient for MTD deposition (not, vert, similar 5°), they are transported all the way down to the foot of the slope and disintegrate to mass flows. From these observations we suggest that the mass-wasting history of the investigated Cretan slope area over a longer period of time is characterized by repeated sediment erosion and transport into the deeper Cretan Sea basin. The relocation of the critical slope portion in upslope direction and therefore recurrence of mass-wasting events is thereby likely controlled by the progressive steepening of the slope. This mechanism and restriction of sediment failure to narrow, critically-inclined and relocating slope portions likely explains how such an active margin setting can exhibit only scarce findings of MTDs on the slope despite an expected, extensive and widespread mass wasting.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 285-306, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:285-306
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 307-318, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:307-318
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 251(2008), 1/2, Seite 15-31, 1872-6151
    In: volume:251
    In: year:2008
    In: number:1/2
    In: pages:15-31
    Type of Medium: Online Resource
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 247(2008), 1/2, Seite 46-60, 1872-6151
    In: volume:247
    In: year:2008
    In: number:1/2
    In: pages:46-60
    Description / Table of Contents: This study documents the fractal characteristics of submarine mass movement statistics and morphology within the Storegga Slide. Geomorphometric mapping is used to identify one hundred and fifteen mass movements from within the Storegga Slide scar and to extract morphological information about their headwalls. Analyses of this morphological information reveal the occurrence of spatial scale invariance within the Storegga Slide. Non-cumulative frequency-area distribution of mass movements within the Storegga Slide satisfies an inverse power law with an exponent of 1.52. The headwalls exhibit geometric similarity at a wide range of scales and the lengths of headwalls scale with mass movement areas. Composite headwalls are self-similar. One of the explanations of the observed spatial scale invariance is that the Storegga Slide is a geomorphological system that may exhibit self-organized criticality. In such a system, the input of sediment is in the form of hemipelagic sedimentation and glacial sediment deposition, and the output is represented by mass movements that are spatially scale invariant. In comparison to subaerial mass movements, the aggregate behavior of the Storegga Slide mass movements is more comparable to that of the theoretical ‘sandpile’ model. The origin of spatial scale invariance may also be linked to the retrogressive nature of the Storegga Slide. The geometric similarity in headwall morphology implies that the slope failure processes are active on a range of scales, and that modeling of slope failures and geohazard assessment can extrapolate the properties of small landslides to those of larger landslides, within the limits of power law behavior. The results also have implications for the morphological classification of submarine mass movements, because headwall shape can be used as a proxy for the type of mass movement, which can otherwise only be detected with very high resolution acoustic data that are not commonly available.
    Type of Medium: Online Resource
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 254(2008), 1/2, Seite 107-120, 1872-6151
    In: volume:254
    In: year:2008
    In: number:1/2
    In: pages:107-120
    Description / Table of Contents: We use new swath bathymetry data acquired during the RV Sonne cruise GEOPECO and complement them with swath data from adjacent regions to analyse the morphotectonics of the Peruvian convergent margin. The Nazca plate is not covered with sediments and therefore has a rough surface along the entire Peruvian trench. The styles of roughness differ significantly along the margin with linear morphological features trending in various directions, most of them oblique to the trench and roughness magnitudes of a few to several hundred meters. The lower slope is locally very rough and at the verge of failure throughout the entire Peruvian margin, as a result of subduction erosion causing the lower slope to over-steepen. Using curvature attributes to quantitatively examine the morphology in the Yaquina and Mendaña areas revealed that the latter shows a larger local roughness both seaward and landward of the trench. However, the amplitude of morphological roughness is larger in the Yaquina area. We identified a 125 km2 large slump on the Lima middle slope. Morphometric dating suggests an age of 74,500 years within 35 to 40% error. Estimated incision rates on the upper slope are between 0.1 and 0.3 mm/yr suggesting that landscape evolution on the Peruvian submarine continental slope is similarly slow than that in the Atacama desert.
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 244(2007), 1/4, Seite 166-183, 1872-6151
    In: volume:244
    In: year:2007
    In: number:1/4
    In: pages:166-183
    Type of Medium: Online Resource
    Pages: Ill., graph. Darst., Kt
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, (2009), 1872-6151
    In: year:2009
    In: extent:10
    Description / Table of Contents: Porangahau Ridge, located offshore the Wairarapa on the Hikurangi Margin, is an active ocean-continent collision region in northeastern New Zealand coastal waters. Bottom simulating reflections (BSRs) in seismic data indicate the potential for significant gas hydrate deposits across this part of the margin. Beneath Porangahau Ridge a prominent high-amplitude reflection band has been observed to extend from a deep BSR towards the seafloor. Review of the seismic data suggest that this high-amplitude band is caused by local shoaling of the base of gas hydrate stability due to advective heat flow and it may constitute the location of elevated gas hydrate concentrations. During R/V Tangaroa cruise TAN0607 in 2006 heat flow probing for measurements of vertical fluid migration, sediment coring for methane concentrations, and additional seismic profiles were obtained across the ridge. In a subsequent 2007 expedition, on R/V Sonne cruise SO191, a controlled source electromagnetic (CSEM) experiment was conducted along the same seismic, geochemical, and heat flow transect to reveal the electrical resistivity distribution. CSEM data highlight a remarkable coincidence of anomalously high resistivity along the western, landward flank of the ridge which point to locally higher gas hydrate concentration above the high amplitude reflection band. Measured sediment temperature profiles, also along the western flank, consistently show non-linear and concave geothermal gradients typical of advective heat flow. Geochemical data reveal elevated methane concentrations in surface sediments concomitant with a rapid decline in sulfate concentrations indicating elevated methane flux and oxidation of methane in conjunction with sulfate reduction at the landward ridge base. Together, these data sets suggest that the western rim of Porangahau Ridge is a tectonically driven zone of rising fluids that transport methane and cause an upward inflection of the base of gas hydrate stability and the formation of locally enriched gas hydrate above the reflective zone.
    Type of Medium: Online Resource
    Pages: 10 , graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...