GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Food—Microbiology. ; Renewable energy sources.
    Description / Table of Contents: 1 Utilization Of Food Waste For Biofuel Production -- 2 Bioenergy And Food Processing Waste -- 3 From fruit and vegetable waste to biofuel production-PART-I -- 4 From fruit and vegetable waste to biofuel production-PART-II -- 5 Recent advances in biogas production from food waste -- 6 Biogas from kitchen waste -- 7 Food processing by-products and waste utilization for bioethanol production -- 8 Utilization of fruit-vegetable waste and other feedstocks for bioethanol fermentation: New insight -- 9 Production of Bioethanol from fruit wastes: Recent Advances -- 10 Trends in biodiesel production from algae and animal fat wastes: challenges and prospects.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 278 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9789811908132
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Microbiology—Technique. ; Microbial ecology. ; Industrial microbiology. ; Microbiology
    Description / Table of Contents: Chapter. 1. Recent advancements in municipal wastewater as source of biofuels from algae -- Chapter. 2. Recent trends for production of biofuels using algal biomass -- Chapter. 3. Microbial mats and its significance in biofuel production -- Chapter. 4. Algal biohydrogen production: opportunities and challenges -- Chapter. 5. Using Algae as a Renewable Source in the Production of Biodiesel -- Chapter. 6. Various applications to macroalgal and microalgal biomasses for biohydrogen and biomethane production -- Chapter. 7. Algal biofuels: clean energy to combat the climate change -- Chapter. 8. Thermo-kinetic study of Arthrospira platensis microalgae pyrolysis: Evaluation of kinetic and thermodynamics parameters -- Chapter. 9. Growth of Chlorella minutissima microalgae from fruit waste extract for biodiesel production -- Chapter. 10. Microalgae: A way towards sustainable development of a society.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(X, 277 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789811968105
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Biology—Technique. ; Microbiology. ; Biotechnology. ; Biology
    Description / Table of Contents: Chapter 1. Biotechnological approaches to enhance algae biofuel production -- Chapter 2. The use of omics technologies, random mutagenesis, and genetic transformation techniques to improve algae for biodiesel industry -- Chapter 3. Algal butanol production: recent developments -- Chapter 4. Algal synthesis of gold nanoparticles: applications in bioenergy -- Chapter 5. Challenges assessment in economic Algal biofuel Production -- Chapter 6. Influence of culture conditions on the microalgae biomass and lipid accumulation -- Chapter 7. Advanced genetic approaches towards custom design microalgae for fourth-generation biofuels -- Chapter 8. Algal biofuel production from municipal waste waters -- Chapter 9. Positive influence and future perspective of marine alga on biofuel production -- Chapter 10. Algae bacterial mixed culture for waste to wealth conversation: a case study.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 295 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789811968068
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Agriculture. ; Refuse and refuse disposal. ; Bioenergetics.
    Description / Table of Contents: Chapter 1. Pulses waste to biofuels -- Chapter 2. Utilization of Wheat and Maize waste as Biofuel source -- Chapter 3. Agricultural residues and manures into bioenergy -- Chapter 4. Bioenergy from cellulose of Woody Biomass -- Chapter 5. Potential Technologies for Advanced Generation Biofuels from Waste Biomass -- Chapter 6. Biological pretreatment strategies for second generation lignocellulosic biomass to enhance ethanol production -- Chapter 7. Agricultural lignocellulosic waste to Biofuels -- Chapter 8. Mixed lignocellulosic feedstocks: An effective approach for enhanced biofuel production -- Chapter 9. Bioenergy: Challenges ahead and Future -- Chapter 10. Production of bioethanol from mixed lignocellulosic biomass:Future prospects and challenges.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIII, 326 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789811962301
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Microbial ecology. ; Industrial microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9789811968105
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (218 pages)
    Edition: 1st ed.
    ISBN: 9783030147266
    Series Statement: Fungal Biology Series
    Language: English
    Note: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Fungal Cellulases: New Avenues in Biofuel Production -- 1.1 Introduction -- 1.2 Classification, Production, and Mode of Action -- 1.3 Cellulase as Biofuels -- 1.3.1 Bioethanol -- 1.3.1.1 Stages/Processing Route -- Pretreatment -- Hydrolysis -- Fermentation -- 1.3.1.2 Factors Affecting Bioethanol Manufacturing -- Temperature -- Inoculum -- Agitation Rate -- Fermentation Time -- 1.3.1.3 Bioethanol-Based Economy -- 1.3.1.4 Recent Status of Bioethanol Production -- 1.4 Advantages of Fungal Cellulase -- 1.5 Industrial Application -- 1.5.1 Function of Cellulase in Several Industries -- 1.5.1.1 Biofuels -- 1.5.1.2 Textile Industry -- 1.5.1.3 Pulp and Paper Industry -- 1.5.1.4 Agriculture Industries -- 1.5.1.5 Animal Feed Industries -- 1.5.1.6 Other Applications -- 1.6 Current Status -- 1.7 Conclusion -- References -- Chapter 2: An Insight into Fungal Cellulases and Their Industrial Applications -- 2.1 Introduction -- 2.2 Fungal Cellulases -- 2.2.1 Cellulases from Aspergillus -- 2.2.2 Cellulases from Trichoderma -- 2.2.3 Cellulases from Penicillium -- 2.2.4 Cellulases from Other Genera -- 2.3 Conclusion -- References -- Chapter 3: Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation -- 3.1 Introduction -- 3.2 Cellulase Production by Submerged Fermentation -- 3.3 Cellulase Production by Solid-State Fermentation -- 3.4 Summary -- 3.5 Conclusion -- References -- Chapter 4: Microorganisms for Cellulase Production: Availability, Diversity, and Efficiency -- 4.1 Introduction -- 4.2 Identification of New Strains with Potential for Cellulose Production -- 4.3 Microorganisms as Tools for Efficient Cellulase Production -- 4.3.1 Fermentative Process Parameters -- 4.3.2 Optimization Process for Enhanced Cellulose Production. , 4.4 Conclusion -- References -- Chapter 5: Role of Solid-State Fermentation to Improve Cost Economy of Cellulase Production -- 5.1 Introduction -- 5.2 SSF Mode of Cellulase Production -- 5.3 SmF Versus SSF -- 5.4 Microbes and Other Conditions in SSF -- 5.5 Role of Inducer/Accessory Proteins in Cellulase Production -- 5.6 Cellulase Optimization Strategies -- 5.7 Microbial Consortia Applications -- 5.8 Process Economy of Production and Extraction in SSF Mode -- 5.9 Pilot-Scale Production Strategies -- 5.10 Conclusion -- References -- Chapter 6: Cellulose as a Potential Feedstock for Cellulose Enzyme Production -- 6.1 Introduction -- 6.2 Enzymatic Mechanisms of Cellulases -- 6.2.1 Endoglucanase -- 6.2.2 Exoglucanase -- 6.2.3 β-Glucosidase -- 6.3 Cellulose Source Materials and Their Derivatives -- 6.4 Sources of Cellulases -- 6.4.1 Cellulolytic Organisms -- 6.4.1.1 Fungi -- 6.4.1.2 Bacteria -- 6.5 Application of Cellulases in Various Industries -- 6.5.1 Pulp and Paper Industry -- 6.5.2 Textile Industry -- 6.5.3 Bioethanol Industry -- 6.5.4 Wine and Brewery Industry -- 6.5.5 Food Processing Industry -- 6.5.6 Animal Feed Industry -- 6.5.7 Agricultural Industries -- 6.5.8 Olive Oil Extraction -- 6.5.9 Carotenoid Extraction -- 6.5.10 Detergent Industry -- 6.5.11 Waste Management -- 6.6 Immobilization of Cellulase -- 6.7 Future Perspectives -- 6.8 Conclusion -- References -- Chapter 7: Cellulose as Potential Feedstock for Cellulase Enzyme Production: Versatility and Properties of Various Cellulosic Biomass - Part II -- 7.1 Introduction -- 7.2 Sources of Cellulose -- 7.2.1 Natural -- 7.2.2 Synthetic -- 7.3 Cellulase and Its Types -- 7.4 Effective Ways of Cellulase Production -- 7.4.1 Production of Cellulase Through Fermentation -- 7.5 Various Applications of Cellulases -- 7.5.1 Paper Industry -- 7.5.2 Textile Industry -- 7.5.3 Biofuel and Brewery Industry. , 7.5.4 Agriculture and Detergent Industry -- 7.5.5 Food Industry -- 7.6 Fine-Tuning the Digestion of Cellulose with a Discovery of Novel Enzymes -- References -- Chapter 8: Immobilization Methods of Enzymes: Part I -- 8.1 Introduction -- 8.2 Considerations of Immobilization of Enzymes -- 8.3 Methods for Immobilization of Enzymes -- 8.3.1 Physical Methods -- 8.3.1.1 Adsorption -- 8.3.1.2 Gel Entrapment -- 8.3.2 Chemical Methods -- 8.3.2.1 Covalent Bonding -- 8.3.2.2 Cross-Linking -- 8.4 Conclusion -- References -- Chapter 9: Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II) -- 9.1 Introduction -- 9.2 Historical Background -- 9.3 Modes of Immobilization -- 9.4 Polymers as Supports -- 9.4.1 Alginate -- 9.4.2 Chitin and Chitosan -- 9.4.3 Carrageenan -- 9.4.4 Starch -- 9.4.5 Pectin -- 9.4.6 Activated Carbon -- 9.5 Immobilization Strategies -- 9.6 Conclusion -- References -- Chapter 10: Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I -- 10.1 Introduction -- 10.2 Cellulase System and Control of Cellulose Gene Expression -- 10.3 Characteristics of Host Strains -- 10.4 Individual Strains (Bacteria, Yeast, and Molds Involved in Cellulose Production) -- 10.4.1 Construction of Recombinant Production Strains -- 10.4.2 Transformation and Identification of Transformed Strains -- 10.5 Fermentative Production of Cellulase Enzyme -- 10.5.1 Cellulase Production by Bacteria -- 10.5.2 Cellulase Production by Fungus -- 10.5.3 Cellulase Production by Yeast -- 10.6 Application of Cellulases -- 10.6.1 Paper and Pulp Industry -- 10.6.2 Textile Industry -- 10.6.3 Bioethanol Industry -- 10.6.4 Wine and Brewery Industry -- 10.6.5 Food Processing Industry -- 10.6.6 Animal Feed Industry -- 10.6.7 Agriculture-Based Industries -- 10.6.8 Extraction of Olive Oil -- 10.6.9 Extraction of Carotenoid Pigments -- 10.6.10 Detergent Industry. , 10.6.11 Waste Management -- 10.7 Future Prospects -- References -- Chapter 11: Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II -- 11.1 Introduction -- 11.1.1 Cellulase -- 11.2 Types of Cellulase -- 11.2.1 Endocellulases -- 11.2.2 Exocellulases -- 11.2.3 Cellobiases -- 11.2.4 Oxidative Cellulases -- 11.2.5 Cellulose Phosphorylases -- 11.3 Sources of Cellulase -- 11.3.1 Fungi -- 11.3.2 Bacteria -- 11.4 Synthesis of Cellulase -- 11.5 Cellulase Production Technologies -- 11.5.1 Fermentation for Cellulase Production -- 11.5.2 Cellulase Production Through Improved Cellulase-Producing Organisms -- 11.5.3 Batch Cellulase Production Process -- 11.5.4 Fed-Batch Cellulase Production Technology -- 11.5.5 Continuous Cellulase Production -- 11.5.6 Downstream Process for Production of Cellulase -- 11.6 Uses of Cellulase in Industries -- 11.7 Need of Recombinant Technology -- 11.8 Application of Recombinant Technology in Cellulase Industries -- 11.9 Future Use of Recombinant Technology in Cellulase Industries -- 11.10 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Biomass energy. ; Waste products as fuel. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9789811908132
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Note: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Utilization of Food Waste for Biofuel Production -- 1.1 Introduction -- 1.2 Background -- 1.3 Characteristics of Food Waste -- 1.4 Production of Biofuels -- 1.4.1 Biodiesel Production from Food Waste -- 1.4.2 Bioethanol Production from Food Waste -- 1.4.2.1 Pretreatment of Food Waste -- 1.4.2.2 Process Strategies -- 1.4.3 Hydrogen and Methane Production from Food Waste -- 1.4.3.1 Production of Hydrogen -- 1.4.3.2 Production of Methane -- 1.5 Biofuel Economics from Food Waste -- 1.6 Food Waste Applications from Different Industries -- 1.7 Advantages of Biofuels from Food Wastes -- 1.8 Disadvantages of Biofuels from Food Wastes -- 1.9 Challenges -- 1.9.1 Unorganized Industry -- 1.9.2 Separation of Food Waste -- 1.9.3 Nonrenewable Resource -- 1.9.4 Nonstandard Resource -- 1.10 Future Prospects -- 1.11 Conclusion -- References -- Chapter 2: Bioenergy and Food Processing Waste -- 2.1 Introduction -- 2.2 Present Scenario of Food Processing Waste in India and the World -- 2.2.1 Biofuels from Food Processing Wastes -- 2.2.1.1 Liquid Biofuels -- Bioethanol -- Biodiesel -- Bio-oil -- Biobutanol -- 2.2.1.2 Gaseous Biofuels -- Biogas or Methane -- Hydrogen -- Hythane -- 2.3 Bioenergy Sources from Different Food Wastes -- 2.3.1 Cereal and Millet Wastes -- 2.3.2 Fruit and Vegetable Processing Wastes -- 2.3.3 Dairy Processing Wastes -- 2.4 Factors Affecting the Production of Biofuels -- References -- Chapter 3: From Fruit and Vegetable Waste to Biofuel Production: Part I -- 3.1 Introduction -- 3.2 Food Waste (FW) Definition, Generation, and Impact -- 3.2.1 FW Characteristics -- 3.2.2 Current FW Management Avenues -- 3.3 Biofuels as Sustainable Energy Sources -- 3.4 Biofuel Production from Fruit and Vegetable Wastes (FVW) -- 3.4.1 Bioethanol. , 3.4.1.1 From Fruit Waste by Marine Bacterial Strain Citrobacter sp. E4 -- 3.4.1.2 From Citrus Peels and Wastes -- 3.4.1.3 From Pineapple Wastes -- 3.4.1.4 From Banana and Mango Wastes -- 3.4.1.5 From Potato Peels -- 3.4.1.6 From Pistachio Wastes -- 3.4.1.7 Factors Affecting Bioethanol Production -- 3.5 Conclusion -- References -- Chapter 4: From Fruit and Vegetable Waste to Biofuel Production: Part II -- 4.1 Introduction -- 4.2 Biohydrogen -- 4.2.1 Factors Influencing Biohydrogen Production -- 4.3 Biodiesel -- 4.3.1 Factors Influencing Biodiesel Production -- 4.4 Biogas -- 4.5 Conclusion -- References -- Chapter 5: Recent Advances in Biogas Production from Food Waste -- 5.1 Introduction -- 5.2 Food Waste -- 5.2.1 Composition of Food Wastes -- 5.2.2 Impacts of Food Waste Accumulation and Disposal -- 5.2.2.1 Environmental Impacts -- 5.2.3 Waste Management Strategies for Food Wastes -- 5.3 Biogas -- 5.3.1 Driving Forces for Biogas Production -- 5.3.2 Biogas Production from Food Waste: The Process -- 5.3.2.1 Pretreatment of Food Waste -- Pretreatment Techniques -- 5.3.2.2 Anaerobic Digestion -- 5.3.2.3 Factors Affecting Biogas Production -- 5.3.2.4 Anaerobic Digestion Systems -- Mono-Digestion of Food Wastes -- Anaerobic Co-Digestion and Enrichment of the Biogas Production -- 5.3.2.5 Advantages of Anaerobic Digestion -- 5.4 Reactors for Biogas Production -- 5.4.1 Conventional Biogas Reactors -- 5.4.2 Innovative Biogas Reactor Technologies -- 5.5 16S rRNA Gene Sequencing of Microbial Consortia for Anaerobic Digestion -- 5.6 Biogas Industry: Current Status -- 5.7 Food Waste Digestion: The Potential -- 5.8 Biogas Production-Economic Perspectives -- 5.8.1 Biogas Economics for Food Wastes -- 5.8.2 Anaerobic Digestion of Food Wastes and the Circular Economy -- 5.9 Issues Related to Biogas Production -- 5.10 Future Prospects and Conclusion -- References. , Chapter 6: Biogas from Kitchen Waste -- 6.1 Introduction -- 6.2 Biofuel Classifications -- 6.2.1 Kitchen Waste Composition -- 6.2.1.1 Biochemical Methane Potential (BMP) -- Microbes Required for Hydrolysis -- Methanogenesis -- 6.2.1.2 Pretreatment Methods for Food Waste -- 6.2.2 Biogas Digester -- 6.2.3 Barriers in the Biogas Production (Mittal et al. 2018) -- 6.3 Conclusion -- References -- Chapter 7: Food Processing By-Products and Waste Utilisation for Bioethanol Production -- 7.1 Introduction -- 7.2 Applications of Bioethanol -- 7.3 Bioethanol Production -- 7.3.1 Sugar-Based Feedstock -- 7.3.2 Starch-Based Feedstock -- 7.3.3 Lignocellulosic Feedstock -- 7.4 Significance of Utilising Food Processing By-Products and Waste for the Bioethanol Production -- 7.5 Bioethanol from Food Processing By-Products and Waste -- 7.5.1 Bioethanol from Vegetable and Fruit -- 7.5.2 Bioethanol from Banana Wastes -- 7.5.3 Bioethanol from Citrus Fruit Wastes -- 7.5.4 Bioethanol from Date Fruit Waste -- 7.5.5 Bioethanol from Potato Processing Waste -- 7.5.6 Bioethanol from Coffee Pulp and Husks -- 7.5.7 Bioethanol from Grain Waste -- 7.5.7.1 Energy Crops -- 7.5.7.2 Rice Husks -- 7.5.8 Dairy -- 7.5.8.1 Cheese Whey -- 7.6 Conclusion -- References -- Chapter 8: Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation -- 8.1 Introduction -- 8.1.1 Fruit and Vegetable Wastes (FVW) as a Raw Feedstock for Bioethanol Production -- 8.1.2 Role of Microorganisms -- 8.1.3 Pretreatment and Detoxification of FVW -- 8.1.4 Bioethanol Production -- 8.1.5 Ethanol Recovery by Distillation -- 8.2 Factors Affecting Fermentation -- 8.3 Ethanol as Biofuel -- 8.4 Future of Bioethanol in India -- 8.5 Conclusion -- References -- Chapter 9: Production of Bioethanol from Fruit Wastes: Recent Advances -- 9.1 Introduction -- 9.2 Advantages of Bioethanol. , 9.3 Present Scenario -- 9.4 Ethanol as a Biofuel for Renewable Energy -- 9.5 Bioethanol Economy -- 9.6 Types of Fruit Wastes -- 9.7 Fruit Wastes (Substrates) Suitable for Production of Ethanol -- 9.8 Pretreatments of Fruit Wastes for Ethanol Production -- 9.9 Ethanol Production Using Different Fruit Wastes -- 9.9.1 Kinnow -- 9.9.2 Kinnow and Banana Peels -- 9.9.3 Mango/Banana Waste -- 9.9.4 Banana Waste -- 9.9.5 Mango Waste -- 9.9.6 Citrus Wastes -- 9.9.7 Beet Waste -- 9.9.8 Apple Pomace -- 9.9.9 Pineapple Wastes -- 9.9.10 Grape Pomace -- 9.9.11 Oil Palm -- 9.9.12 Fruit Peel -- 9.9.13 Pawpaw -- 9.9.14 Papaya -- 9.9.15 Date Palm -- 9.9.16 Mixed Fruit Wastes -- 9.9.17 Rambutan -- 9.9.18 Orange Peels -- 9.9.19 Cashew Apple Juice -- 9.9.20 Jamun and Mango -- 9.10 Conclusions -- References -- Chapter 10: Trends in Biodiesel Production from Algae and Animal Fat Wastes: Challenges and Prospects -- 10.1 Introduction -- 10.2 Biodiesel Production by Using Algae -- 10.3 Algae Production Processes and Conversion Processes -- 10.4 Algal Pretreatment for Biodiesel Production -- 10.5 Utilizing Microalgae to Produce Biodiesel -- 10.6 Process Used to Obtain Biodiesel from Algae -- 10.7 Biodiesel Production by Using Animal Fat Waste -- 10.8 Biodiesel Production Via Transesterification by Using Animal Fats -- 10.9 Characteristics of Biodiesel Which Is Obtained from Animals Feedstocks -- 10.10 Major Challenges and Future Prospects in Biodiesel Production from Vegetable Oil and Animal Fat Waste -- 10.11 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (238 pages)
    Edition: 1st ed.
    ISBN: 9789811570704
    Series Statement: Clean Energy Production Technologies Series
    Language: English
    Note: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Impact of Fermentation Types on Enzymes Used for Biofuels Production -- 1.1 Introduction -- 1.2 Characteristics of Biofuels -- 1.3 Classification of Biofuels -- 1.4 History of Biofuels -- 1.5 Biofuel Production Process -- 1.5.1 Pre-Treatment -- 1.5.2 Hydrolysis -- 1.5.3 Fermentation -- 1.6 Enzymes in Biofuel Production -- 1.7 Kinetics of Biofuel Synthesis -- 1.8 Factors Affecting the Enzyme Expression Responsible for Biofuel Production -- 1.9 Types of Fermentation for Enzymatic Biofuel Production -- 1.10 Biobutanol Production -- 1.11 Factors Affecting the Fermentation Process -- 1.12 Impact of Fermentation on Enzymes During Biofuels Production -- 1.13 Downstream Processing of Biofuels -- 1.13.1 Gas Stripping and Vacuum Process -- 1.13.2 Biphasic Solvent Extraction -- 1.13.3 Adsorption Based Recovery -- 1.13.4 Recovery of Biofuels Based on Membrane Separation -- 1.13.5 Perstraction -- 1.14 Conclusion -- 1.15 Future Prospects -- References -- Chapter 2: Downstream Processing -- Applications and Recent Updates -- 2.1 Introduction -- 2.2 Stages of Downstream Process -- 2.3 Downstream Process Unit Operations (Fig. 2.2) -- 2.3.1 Separation of Cells and Extracellular Fluid -- 2.3.1.1 Filtration -- 2.3.1.2 Centrifugation -- 2.3.1.3 Gravity Sedimentation -- 2.3.1.4 Flocculation -- 2.3.1.5 Flotation -- 2.3.2 Cell Rupture and Separation of Cell Extract -- 2.3.2.1 Mechanical Rupture -- 2.3.2.2 Non-Mechanical Cell Rupture -- Chemical Extraction -- Biological Rupture -- 2.3.3 Concentration and Purification of Soluble Products -- 2.3.3.1 Precipitation -- 2.3.3.2 Membrane Separation -- 2.3.3.3 Nanofiltration or Reverse Osmosis -- 2.3.3.4 Liquid Extraction -- 2.3.3.5 Chromatography -- Adsorption Chromatography -- Ion Exchange Chromatography -- Affinity Chromatography. , Gel Chromatography -- Electrophoresis -- 2.3.4 Finishing Operations -- 2.3.4.1 Crystallization -- 2.3.4.2 Drying -- 2.4 Applications and Industrial Products -- 2.4.1 Bio-fuels -- 2.4.1.1 Biobutanol -- 2.4.2 Bt Biopesticides -- 2.4.3 Natural Colourant: Carminic Acid -- 2.4.4 Bioethanol -- 2.4.5 Acetic Acid -- 2.4.6 Lactic Acid -- 2.4.7 Citric Acid -- 2.4.7.1 Methods of Fermentation -- 2.4.8 Pencillin -- 2.4.9 Nisin -- 2.4.10 Vitamin B12 -- 2.4.11 Stevia: A Natural Sweetener -- References -- Chapter 3: Types of Bioreactors for Biofuel Generation -- 3.1 Introduction -- 3.2 Microbial Cultivation -- 3.3 Challenges in Biofuel Generation -- 3.4 Submerged Fermentation -- 3.4.1 Batch Type of Fermenter -- 3.4.2 Fed-Batch Fermentation -- 3.4.3 Continuous Type of Bioreactor -- 3.4.3.1 Separate Hydrolysis and Fermentation -- 3.4.3.2 Simultaneous Saccharification and Fermentation -- 3.4.3.3 Simultaneous Saccharification and Co-Fermentation (SmScF) -- 3.5 Direct Microbial Conversion -- 3.6 Concept of Solid State Fermentation-Based Biorefinery -- 3.7 Types of Solid State Fermentation Bioreactors -- 3.7.1 Tray Type Bioreactors (TTB) -- 3.7.2 Packed Bed Type Bioreactor (PBTB) -- 3.7.3 Air Pressure Pulsation Type Bioreactors (APPTB) -- 3.7.4 Intermittent or Continuously Mixed SSF Bioreactor -- 3.8 Solid-State Fermentation versus Submerged Fermentation -- 3.9 Conclusion -- References -- Chapter 4: Bioprocess for Algal Biofuels Production -- 4.1 Introduction -- 4.2 Generation of Biofuels -- 4.3 Different Types of Algal Biofuels -- 4.3.1 Biodiesel -- 4.3.2 Bioethanol -- 4.3.3 Biogas -- 4.4 Characteristics of Algae as Ideal Resource for Biofuel Production -- 4.5 Upstream Processing: Cultivation Techniques of Microalgae for Biofuels Production -- 4.6 Downstream Processing: Harvesting of Algal Biomass -- 4.7 Conclusion -- References. , Chapter 5: Effect of Bioprocess Parameters on Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels Producing Microorganisms -- 5.3 Measuring of Bioprocess Parameters -- 5.4 Bioprocess Parameters Affecting Biofuels Production -- 5.4.1 Physical Parameters -- 5.4.1.1 Role of Temperature in Biofuel Production -- 5.4.1.2 Role of pH in Biofuel Production -- 5.4.1.3 Agitation Rate -- 5.4.1.4 Fermentation Time -- 5.4.2 Nutritional Parameters Affecting Biofuel Production -- 5.4.2.1 Role of Substrate and Effect of Initial Substrate Concentration -- 5.4.2.2 Effect of Different Inoculum Size on Biofuel Production -- 5.4.2.3 Effect of Various Sugars and Their Concentrations -- 5.4.2.4 Effect of Acid Concentration on Biofuel Production -- 5.4.2.5 The Effect of Solvent/Surfactants/Detergents on Biofuel Production -- 5.4.2.6 Effect of Metal Ions on Biofuel Production -- 5.5 Conclusion -- References -- Chapter 6: Role of Substrate to Improve Biomass to Biofuel Production Technologies -- 6.1 Introduction -- 6.2 Composition of Biomass and Its Role in Biofuels Production -- 6.3 Role of Different Substrates in Biofuels Technology -- 6.4 Approaches That Enhance Biomass to Biofuels Production -- 6.4.1 Physical Pretreatment -- 6.4.2 Chemical Pretreatment -- 6.4.3 SPROL Process -- 6.4.4 Ethanol Organosolv Pretreatment -- 6.4.5 Biological Pretreatment -- 6.4.6 Combined Pretreatment Approaches -- 6.4.6.1 Steam Explosion Method -- 6.4.6.2 Supercritical Fluid Extrusion -- 6.4.6.3 Critical Carbon Dioxide Extraction Method -- 6.4.6.4 Comparison Between Efficiencies of Combined Approaches -- 6.5 Biofuels Produced from Biomass -- 6.6 Conclusion -- References -- Chapter 7: Techno-Economic Analysis of Second-Generation Biofuel Technologies -- 7.1 Introduction -- 7.2 Techno-Economic Assessment of Biofuels. , 7.3 Different Second-Generation Biofuel Technologies Based on the Products Formed -- 7.4 Techno-Economic Assessment of Different Second-Generation Biofuel Technologies -- 7.4.1 Gasification -- 7.4.2 Different Types of Gasification -- 7.4.2.1 Fischer-Tropsch Synthesis -- 7.4.2.2 Mixed Alcohol Synthesis -- 7.4.2.3 Methanol to Gasoline -- 7.4.2.4 Syngas to Distillates (S2D) -- 7.4.2.5 Syngas Fermentation -- 7.4.3 Pyrolysis -- 7.5 Techno-Economic Assessment of Different Pre-treatment Technologies for Bioethanol Production -- 7.5.1 AFEX Pre-treatment Process -- 7.5.2 Dilute Acid Pre-treatment -- 7.5.3 Lime Pre-treatment -- 7.5.4 Hot Water Pre-treatment -- 7.5.5 Soaking in Aqueous Ammonia (SAA) -- 7.5.6 SO2 Using Steam Explosion -- 7.6 Techno-Economic Assessment of Different Technologies for Enzymatic Hydrolysis -- 7.6.1 Separate Hydrolysis and Fermentation (SHF) -- 7.6.2 Simultaneous Saccharification and Fermentation (SSF) -- 7.7 Software Used -- 7.7.1 ASPEN -- 7.7.2 SuperPro Designer -- 7.8 Conclusion and Future Perspectives -- References -- Chapter 8: Recent Advances in Metabolic Engineering and Synthetic Biology for Microbial Production of Isoprenoid-Based Biofuel... -- 8.1 Introduction -- 8.2 Hemiterpenoids -- 8.3 Monoterpenoids -- 8.4 Sesquiterpenoids -- 8.5 Conclusion -- References -- Chapter 9: Applications of Biosensors for Metabolic Engineering of Microorganisms and Its Impact on Biofuel Production -- 9.1 Introduction -- 9.2 An Overview of Biosensor-Based Strategies -- 9.3 Association of Biosensors and Biofuel Metabolic Engineering -- 9.4 Conclusion -- References -- Chapter 10: Recent Progress in CRISPR-Based Technology Applications for Biofuels Production -- 10.1 Introduction -- 10.2 An Overview of CRISPR Approaches -- 10.3 Association of CRISPR Approaches with Production of Biofuels -- 10.4 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Biomass energy-Research. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811393334
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- 1: Biofuel: Types and Process Overview -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.3 First-Generation Biorefinery -- 1.3.1 Transesterification -- 1.3.2 Ethanol Production -- 1.3.3 Fermentation -- 1.3.4 Anaerobic Fermentation -- 1.3.5 Whole-Crop Utilization -- 1.4 Second-Generation Biofuels -- 1.4.1 Physical Process -- 1.4.1.1 Mechanical Extraction -- 1.4.1.2 Briquetting -- 1.4.1.3 Distillation -- 1.4.2 Thermochemical Conversion -- 1.4.2.1 Combustion -- 1.4.2.2 Gasification -- 1.4.2.2.1 Biomethanol -- 1.4.2.2.2 Methane -- 1.4.2.2.3 Bioethanol Production -- 1.4.3 Liquefaction -- 1.4.4 Pyrolysis of Biomass -- 1.4.4.1 Fast Pyrolysis -- 1.4.4.2 Flash Pyrolysis -- 1.5 Third-Generation Biofuels -- 1.5.1 Open Pond -- 1.5.2 Photobioreactor (PBRs) -- 1.6 Fourth-Generation Biofuel -- 1.6.1 Direct Process for Solar Fuel -- 1.7 Microbial Conversion -- 1.8 Enzymatic Conversion to Biofuel -- 1.8.1 Cellulases -- 1.8.2 Xylanases -- 1.8.3 Lignolytic Enzymes -- 1.8.4 Cellobiose Dehydrogenase (CBDH) -- 1.9 Effect of Surfactant on Enzymatic Hydrolysis -- 1.10 Biofuel from Nanotechnology -- 1.11 Lignin Strategy to Biofuel -- 1.11.1 Lignin Structure -- 1.11.2 Lignin Valorization -- 1.12 Sustainability Criteria -- 1.12.1 Food and Feedstock -- 1.12.2 Water Requirement -- 1.12.3 Emissions -- 1.12.4 Biodiversity -- 1.12.5 Policies -- 1.13 Conclusions -- 1.14 Summary -- References -- 2: Applications of Plant-Based Natural Products to Synthesize Nanomaterial -- 2.1 Introduction -- 2.2 Inorganic Nanoparticles Derived from Natural Sources -- 2.3 Biological Synthesis of Nanomaterials -- 2.4 Processing Natural Materials -- 2.5 Plant-Based Synthesis of Metallic NPs and Their Applications -- 2.5.1 Traditional Strategies of Metals. , 2.5.2 Distinctive Strategies for Union Metallic Nanoparticle -- 2.5.3 Bio-based Reduction Strategies -- 2.6 Parts of Plants Used to Synthesize Nanomaterials -- 2.6.1 Flowers -- 2.6.2 Stem -- 2.6.3 Seeds -- 2.6.4 Fruits -- 2.6.5 Leaves -- 2.7 Plant-Derived Formation of Silver Nanoparticles -- 2.8 Plant-Based Gold Nanoparticle -- 2.9 Plant-Based Zinc Oxide Nanoparticles -- 2.10 Biofuel Applications of Nanoparticles -- 2.10.1 Role in Pretreatment -- 2.10.2 Role in Cellulase Production and Stability -- 2.10.3 Role in Saccharification -- 2.11 Optional Metabolite Impact on Bio-decrease Response -- 2.12 Business Uses of Biosynthesized Nanoparticles -- 2.12.1  NPs in Waste Treatment NPs -- 2.12.2 Beautifiers -- 2.12.3 NPs in Food Industry -- 2.13 Component Blend of Metallic NPs -- 2.14 Conclusion -- References -- 3: Application of Plant-Based Natural Product to Synthesize Nanomaterial -- 3.1 Definition of Nanoparticles -- 3.2 Physicochemical Properties and Application of Nanoparticles -- 3.2.1 Silver Nanoparticles (Ag NPs) -- 3.2.2 Zinc Oxide Nanoparticles (ZnO NPs) -- 3.2.3 Titanium Nanoparticles (TiO2 NPs) -- 3.2.4 Copper Nanoparticles (Cu NPs) -- 3.2.5 Gold Nanoparticles (Au NPs) -- 3.3 Synthesis of Nanoparticles -- 3.4 Biosynthesis of Nanoparticles Using Plants -- 3.4.1 The Role of Plant Metabolites in the Reduction of Metal Ions -- 3.4.2 Factors Affecting the Biological Synthesis of Nanoparticles Using Plants -- 3.4.2.1 Influence of Reaction Temperature -- 3.5 Major Nanoparticles Synthesized by Plant Extracts -- 3.5.1 Biosynthesis of Silver Nanoparticles -- 3.5.2 Biosynthesis of Gold Nanoparticles -- 3.5.3 Biosynthesis of Palladium Nanoparticles -- 3.5.4 Biosynthesis of Titanium Dioxide Nanoparticles -- 3.5.5 Biosynthesis of Zinc Oxide Nanoparticles -- 3.5.6 Biosynthesis of Iron Nanoparticles -- References. , 4: Green Synthesis Approach to Fabricate Nanomaterials -- 4.1 Introduction -- 4.2 Synthesis and Characteristics of Nanomaterials -- 4.2.1 Top-Down Approach -- 4.2.2 Bottom-Up Approach -- 4.2.3 Chemical Approach -- 4.3 Green Synthesis Approaches -- 4.4 Plant-Based Synthesis -- 4.5 Bacterial Synthesis -- 4.6 Fungus- and Alga-Based Synthesis -- 4.7 Actinomycete-Based Nanoparticle Synthesis -- 4.8 Viral Particles for Nanoparticle Synthesis -- 4.9 Biological Derivatives for Nanoparticle Synthesis -- 4.10 Green Nanocatalysts -- 4.11 Bioenergy Applications of Nanoparticles -- 4.12 Prospective Applications of Green Synthesized Nanoparticles -- 4.13 Advantages and Disadvantages of Green Synthesis -- 4.14 Future Directions and Conclusions -- References -- 5: Nanomaterials: Types, Synthesis and Characterization -- 5.1 Introduction -- 5.2 Classification -- 5.2.1 Organic Nanoparticles -- 5.2.1.1 Synthesis of Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles -- 5.2.2.1 Metal Oxide and Metallic Nanoparticles -- 5.2.2.1.1 Synthesis of Metal and Metal Oxide Nanoparticles -- 5.2.3 Carbon-Based -- 5.2.3.1 Graphene -- 5.2.3.1.1 Synthesis of Graphene -- 5.2.3.2 Carbon Nanotubes (CNTs) -- 5.2.3.3 Synthesis of CNTs -- 5.3 Characterization -- 5.3.1 Size Determination -- 5.3.2 Quantification -- 5.4 Applications of the Nanoparticles in Biofuels -- 5.5 Conclusion and Future Remarks -- References -- 6: Nanotechnology: An Application in Biofuel Production -- 6.1 Introduction -- 6.2 Classification of Biofuel -- 6.3 Production of Biofuel -- 6.3.1 Production Techniques for Biofuel -- 6.3.2 Algal Biodiesel -- 6.3.3 Biohydrogen -- 6.4 Synthesis and Properties of Nanomaterials -- 6.5 Application of Nanotechnology in Biofuel Production -- 6.5.1 Biohydrogen Production -- 6.5.1.1 Dark Fermentation for Production of Biohydrogen. , 6.5.1.2 Biohydrogen Production by the Photofermentation Process -- 6.5.2 Biogas Production -- 6.5.3 Biodiesel Production -- 6.5.4 Bioethanol Production -- 6.6 Conclusion -- References -- 7: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization -- 7.1 Introduction -- 7.2 Different Methods of Nanomaterial Synthesis -- 7.2.1 Sol-Gel Synthesis -- 7.2.2 Arc-Discharge Method -- 7.2.3 Hydrothermal Synthesis -- 7.2.4 Solvothermal Synthesis -- 7.2.5 Combustion Synthesis (CS) -- 7.2.6 Microwave Synthesis -- 7.2.7 Experimental Tools and Characterization of Nanomaterials -- 7.2.8 Structural Characterization -- 7.2.9 X-Ray Diffraction (XRD) -- 7.2.10 Small-Angle X-Ray Scattering (SAXS) -- 7.2.11 Electron Microscopy (EM) -- 7.2.12 Scanning Electron Microscopy (SEM) -- 7.2.13 Transmission Electron Microscopy (TEM) -- 7.2.14 Scanning Probe Microscopy (SPM) -- 7.2.15 Chemical Characterization -- 7.2.16 Optical Spectroscopy -- 7.2.16.1 Photoluminescence and UV/Vis Spectroscopy -- 7.2.16.2 Raman Spectroscopy -- 7.2.17 Electron Spectroscopy -- 7.2.17.1 Energy Dispersive X-Ray Spectroscopy (EDS) -- 7.2.17.2 Auger Electron Spectroscopy (AES) -- 7.2.17.3 X-Ray Photoelectron Spectroscopy (XPS) -- 7.2.18 Ionic Spectrometry -- 7.2.18.1 Rutherford Backscattering Spectrometry (RBS) -- 7.2.18.2 Secondary Ion Mass Spectrometry (SIMS) -- 7.3 Enzyme Immobilization -- 7.4 Techniques for Enzyme Immobilization -- 7.5 Application of Nanomaterial-Immobilized Enzyme in Biofuel Production -- 7.6 Conclusions -- References -- 8: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization: Part II -- 8.1 Introduction -- 8.2 Synthesis of Nanomaterials -- 8.2.1 Different Approaches for the Synthesis of Nanomaterials -- 8.2.1.1 Top-Down Approach -- 8.2.1.2 Bottom-Up Approach -- 8.2.2 Methods Involved in Nanomaterial Synthesis. , 8.2.2.1 Physical Methods -- 8.2.2.1.1 High-Energy Ball Milling (HEBM) -- 8.2.2.1.2 Melt Mixing -- 8.2.2.1.3 Laser Ablation -- 8.2.2.1.4 Physical Vapour Deposition -- 8.2.2.2 Chemical Method -- 8.2.2.2.1 Sol-Gel Method -- 8.2.2.2.2 Microemulsion Method -- 8.2.2.2.3 Hydrothermal Method -- 8.2.2.3 Biological Method -- 8.2.2.3.1 Biosynthesis Using Microorganisms -- 8.2.2.3.2 Nanomaterial Synthesis Using Biomolecules as Templates -- 8.2.2.3.3 Nanomaterial Synthesis Using Plant Extracts -- 8.2.2.4 Hybrid Method -- 8.2.2.4.1 Chemical Vapour Deposition and Chemical Vapour Synthesis -- 8.2.3 Synthesis of Nanoparticles -- 8.2.4 Synthesis of Nanowires, Nanorods and Nanotubes -- 8.3 Enzyme Immobilization -- 8.3.1 Active Nanomaterials in Enzyme Immobilization -- 8.3.2 Immobilized Enzymes in Biotechnology -- 8.3.3 Immobilized Enzymes in Biomedicine -- 8.4 Applications of Nanomaterials in Enzyme Immobilization -- 8.4.1 Gold Nanoparticles as Enzyme Immobilization Templates -- 8.5 Conclusion -- References -- 9: Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Basic of Enzyme Immobilization -- 9.4 Methods of Immobilization -- 9.5 Adsorption of Enzymes -- 9.6 Covalent Binding of Enzymes -- 9.7 Entrapping of Enzymes -- 9.8 Cross-Linking of Enzymes -- 9.9 Nature of Supporting Material for Enzyme Immobilization -- 9.10 Nanomaterial-Based Enzyme Immobilization -- 9.10.1 Enzyme Immobilization Using Magnetic Nanoparticles -- 9.10.2 Novel Nanoparticles for Enzyme Immobilization -- 9.10.3 Enzyme Immobilization Using Nonmagnetic Nanoparticles -- 9.11 Methods of Nanomaterial-Based Enzyme Immobilization -- 9.12 Analytical Tools for Investigating Enzyme-Nanomaterial Interaction. , 9.13 Applications of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Biofuel/Bioenergy.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Entomology ; Biochemistry ; Plant breeding ; Plant genetics ; Biomedical engineering ; Mycology ; Plant biochemistry.
    Description / Table of Contents: Preface -- Role of solid state fermentation to improve cost economy of cellulase production -- Submerged fermentation for fungal cellulase production -- Significance of process parameters to improve cellulase system; role of non-enzymatic protein to improve cellulose hydrolysis -- Assessment of thermophilic/thermostable cellulase for industrial purposes -- How purity alters cellulase and its cost in industries -- Efficiency analysis of crude verses pure cellulase in industries -- Cost effective techniques for cellulase purification for industries -- Strategies to reuse cellulase and immobilization of enzymes -- Significance of feedstock on industrial cellulases -- Current advancements in recombinant technology for industrial cellulases -- Novel metagenomics, genomics, and secretomics approaches underway to identify improved sources of cellulases -- Index
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XV, 209 p. 30 illus., 23 illus. in color)
    ISBN: 9783030147266
    Series Statement: Fungal Biology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...