GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Pollution. ; Waste management. ; Environmental engineering. ; Biotechnology. ; Environmental chemistry.
    Description / Table of Contents: 1 Downstream Processing of Biofuels -- 2 Application of Micro-organisms for Biofuel Production -- 3 Influence of Significant Parameters on Cellulase Production by Solid State Fermentation -- 4 Influence of Xenobiotics on Fungal Ligninolytic Enzymes -- 5 Challenges in Bioethanol Production; Effect of Inhibitory Compounds -- 6 Engineering of Zymomonas Mobilis for enhanced Biofuel production -- 7 Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives -- 8 Bioprocess Parameters for Thermophilic and Mesophilic Biogas Production: Recent Trends and Challenges -- 9 Microbial and Bioinformatics Approach in Biofuel Production -- 10 Substrate Characterization in the Anaerobic Digestion Process. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 342 p. 82 illus., 57 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789813346116
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Entomology ; Biochemistry ; Plant breeding ; Plant genetics ; Biomedical engineering ; Mycology ; Plant biochemistry.
    Description / Table of Contents: Preface -- Role of solid state fermentation to improve cost economy of cellulase production -- Submerged fermentation for fungal cellulase production -- Significance of process parameters to improve cellulase system; role of non-enzymatic protein to improve cellulose hydrolysis -- Assessment of thermophilic/thermostable cellulase for industrial purposes -- How purity alters cellulase and its cost in industries -- Efficiency analysis of crude verses pure cellulase in industries -- Cost effective techniques for cellulase purification for industries -- Strategies to reuse cellulase and immobilization of enzymes -- Significance of feedstock on industrial cellulases -- Current advancements in recombinant technology for industrial cellulases -- Novel metagenomics, genomics, and secretomics approaches underway to identify improved sources of cellulases -- Index
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (XV, 209 p. 30 illus., 23 illus. in color)
    ISBN: 9783030147266
    Series Statement: Fungal Biology
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Environmental engineering. ; Biotechnology. ; Environmental management. ; Microbiology. ; Plant biochemistry.
    Description / Table of Contents: Chapter-1 Biofuels: types and process overview -- Chapter-2 Biofuels generation based on technical process and biomass quality -- Chapter-3 Biogas: An Effective and Common Energy Tool-PART-I -- Chapter-4 Biogas: An Effective and Common Energy Tool-PART-II -- Chapter-5 Biogas: An Effective and Common Energy Tool-PART-III -- Chapter-6 Stoichiometric analysis of biogas production from industrial residues -- Chapter-7 Bioethanol Production; Generation Based Comparative Status Measurements -- Chapter-8 Algal Biomass: Potential Renewable Feedstock for Biofuels Production-PART-I -- Chapter-9 Recent trends in biogas upgrading technologies for biomethane production -- Chapter-10 Efficiency Analysis of Crude Vs Pure Cellulase in Industry -- Chapter-11 Significance of process parameters on fungal cellulase production -- Chapter-12 Modeling and stimulation of pyrolysis of teak (Tectona grandis) Sawdust. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIII, 342 p. 76 illus., 48 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9789811386374
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Environmental engineering ; Biotechnology ; Environmental chemistry ; Environmental management ; Microbiology ; Plant biochemistry
    Description / Table of Contents: Chapter-1: Algal Biomass: Potential renewable feedstock for biofuels production -- Chapter-2: Algal Butanol Production -- Chapter-3: Suitability of the lantana weed as a substrate for biogas production -- Chapter-4: Recent progress in emerging microalgae technology for biofuel production -- Chapter-5: Recent update on biodiesel production using various substrates and practical execution -- Chapter-6: Cellulose Nanofibers from Agro-wastes of North East India for Nanocomposite and Bioenergy Applications -- Chapter-7: Impact of pretreatment technologies for biomass to biofuels production -- Chapter-8: Impact of pretreatment technology on cellulosic availability for fuel production -- Chapter-9: Application of metabolic engineering for biofuel production in microorganisms -- Chapter-10: Nanomaterials and its application to improve biomass to bio-fuels production.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 272 p. 70 illus., 49 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9789813296077
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Singapore : Springer Singapore | Singapore : Imprint: Springer
    Keywords: Pollution. ; Waste management. ; Environmental engineering. ; Biotechnology. ; Environmental chemistry.
    Description / Table of Contents: 1 Biofuel Production Technologies, Comparing the Biofuels and Fossil Fuels -- 2 Microbiological aspects of bioenergy production: Recent update and future directions -- 3 A Comprehensive Review on Microbial Technology for Biogas Production -- 4 Biohydrogen Production from Biomass -- 5 Recent updates of biodiesel production: Source, production methods and metagenomic approach -- 6 Process Modelling and Simulation of Biodiesel Synthesis Reaction for Non-edible Yellow -- 7 Microbial Xylanases: A Helping Module for the Enzyme Biorefinery Platform -- 8 Analysis of various green methods to synthesize nanomaterials: An Ecofriendly Approach. .
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XII, 205 p. 62 illus., 30 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9789813346154
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Biomass energy. ; Waste products as fuel. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9789811908132
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Note: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Utilization of Food Waste for Biofuel Production -- 1.1 Introduction -- 1.2 Background -- 1.3 Characteristics of Food Waste -- 1.4 Production of Biofuels -- 1.4.1 Biodiesel Production from Food Waste -- 1.4.2 Bioethanol Production from Food Waste -- 1.4.2.1 Pretreatment of Food Waste -- 1.4.2.2 Process Strategies -- 1.4.3 Hydrogen and Methane Production from Food Waste -- 1.4.3.1 Production of Hydrogen -- 1.4.3.2 Production of Methane -- 1.5 Biofuel Economics from Food Waste -- 1.6 Food Waste Applications from Different Industries -- 1.7 Advantages of Biofuels from Food Wastes -- 1.8 Disadvantages of Biofuels from Food Wastes -- 1.9 Challenges -- 1.9.1 Unorganized Industry -- 1.9.2 Separation of Food Waste -- 1.9.3 Nonrenewable Resource -- 1.9.4 Nonstandard Resource -- 1.10 Future Prospects -- 1.11 Conclusion -- References -- Chapter 2: Bioenergy and Food Processing Waste -- 2.1 Introduction -- 2.2 Present Scenario of Food Processing Waste in India and the World -- 2.2.1 Biofuels from Food Processing Wastes -- 2.2.1.1 Liquid Biofuels -- Bioethanol -- Biodiesel -- Bio-oil -- Biobutanol -- 2.2.1.2 Gaseous Biofuels -- Biogas or Methane -- Hydrogen -- Hythane -- 2.3 Bioenergy Sources from Different Food Wastes -- 2.3.1 Cereal and Millet Wastes -- 2.3.2 Fruit and Vegetable Processing Wastes -- 2.3.3 Dairy Processing Wastes -- 2.4 Factors Affecting the Production of Biofuels -- References -- Chapter 3: From Fruit and Vegetable Waste to Biofuel Production: Part I -- 3.1 Introduction -- 3.2 Food Waste (FW) Definition, Generation, and Impact -- 3.2.1 FW Characteristics -- 3.2.2 Current FW Management Avenues -- 3.3 Biofuels as Sustainable Energy Sources -- 3.4 Biofuel Production from Fruit and Vegetable Wastes (FVW) -- 3.4.1 Bioethanol. , 3.4.1.1 From Fruit Waste by Marine Bacterial Strain Citrobacter sp. E4 -- 3.4.1.2 From Citrus Peels and Wastes -- 3.4.1.3 From Pineapple Wastes -- 3.4.1.4 From Banana and Mango Wastes -- 3.4.1.5 From Potato Peels -- 3.4.1.6 From Pistachio Wastes -- 3.4.1.7 Factors Affecting Bioethanol Production -- 3.5 Conclusion -- References -- Chapter 4: From Fruit and Vegetable Waste to Biofuel Production: Part II -- 4.1 Introduction -- 4.2 Biohydrogen -- 4.2.1 Factors Influencing Biohydrogen Production -- 4.3 Biodiesel -- 4.3.1 Factors Influencing Biodiesel Production -- 4.4 Biogas -- 4.5 Conclusion -- References -- Chapter 5: Recent Advances in Biogas Production from Food Waste -- 5.1 Introduction -- 5.2 Food Waste -- 5.2.1 Composition of Food Wastes -- 5.2.2 Impacts of Food Waste Accumulation and Disposal -- 5.2.2.1 Environmental Impacts -- 5.2.3 Waste Management Strategies for Food Wastes -- 5.3 Biogas -- 5.3.1 Driving Forces for Biogas Production -- 5.3.2 Biogas Production from Food Waste: The Process -- 5.3.2.1 Pretreatment of Food Waste -- Pretreatment Techniques -- 5.3.2.2 Anaerobic Digestion -- 5.3.2.3 Factors Affecting Biogas Production -- 5.3.2.4 Anaerobic Digestion Systems -- Mono-Digestion of Food Wastes -- Anaerobic Co-Digestion and Enrichment of the Biogas Production -- 5.3.2.5 Advantages of Anaerobic Digestion -- 5.4 Reactors for Biogas Production -- 5.4.1 Conventional Biogas Reactors -- 5.4.2 Innovative Biogas Reactor Technologies -- 5.5 16S rRNA Gene Sequencing of Microbial Consortia for Anaerobic Digestion -- 5.6 Biogas Industry: Current Status -- 5.7 Food Waste Digestion: The Potential -- 5.8 Biogas Production-Economic Perspectives -- 5.8.1 Biogas Economics for Food Wastes -- 5.8.2 Anaerobic Digestion of Food Wastes and the Circular Economy -- 5.9 Issues Related to Biogas Production -- 5.10 Future Prospects and Conclusion -- References. , Chapter 6: Biogas from Kitchen Waste -- 6.1 Introduction -- 6.2 Biofuel Classifications -- 6.2.1 Kitchen Waste Composition -- 6.2.1.1 Biochemical Methane Potential (BMP) -- Microbes Required for Hydrolysis -- Methanogenesis -- 6.2.1.2 Pretreatment Methods for Food Waste -- 6.2.2 Biogas Digester -- 6.2.3 Barriers in the Biogas Production (Mittal et al. 2018) -- 6.3 Conclusion -- References -- Chapter 7: Food Processing By-Products and Waste Utilisation for Bioethanol Production -- 7.1 Introduction -- 7.2 Applications of Bioethanol -- 7.3 Bioethanol Production -- 7.3.1 Sugar-Based Feedstock -- 7.3.2 Starch-Based Feedstock -- 7.3.3 Lignocellulosic Feedstock -- 7.4 Significance of Utilising Food Processing By-Products and Waste for the Bioethanol Production -- 7.5 Bioethanol from Food Processing By-Products and Waste -- 7.5.1 Bioethanol from Vegetable and Fruit -- 7.5.2 Bioethanol from Banana Wastes -- 7.5.3 Bioethanol from Citrus Fruit Wastes -- 7.5.4 Bioethanol from Date Fruit Waste -- 7.5.5 Bioethanol from Potato Processing Waste -- 7.5.6 Bioethanol from Coffee Pulp and Husks -- 7.5.7 Bioethanol from Grain Waste -- 7.5.7.1 Energy Crops -- 7.5.7.2 Rice Husks -- 7.5.8 Dairy -- 7.5.8.1 Cheese Whey -- 7.6 Conclusion -- References -- Chapter 8: Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation -- 8.1 Introduction -- 8.1.1 Fruit and Vegetable Wastes (FVW) as a Raw Feedstock for Bioethanol Production -- 8.1.2 Role of Microorganisms -- 8.1.3 Pretreatment and Detoxification of FVW -- 8.1.4 Bioethanol Production -- 8.1.5 Ethanol Recovery by Distillation -- 8.2 Factors Affecting Fermentation -- 8.3 Ethanol as Biofuel -- 8.4 Future of Bioethanol in India -- 8.5 Conclusion -- References -- Chapter 9: Production of Bioethanol from Fruit Wastes: Recent Advances -- 9.1 Introduction -- 9.2 Advantages of Bioethanol. , 9.3 Present Scenario -- 9.4 Ethanol as a Biofuel for Renewable Energy -- 9.5 Bioethanol Economy -- 9.6 Types of Fruit Wastes -- 9.7 Fruit Wastes (Substrates) Suitable for Production of Ethanol -- 9.8 Pretreatments of Fruit Wastes for Ethanol Production -- 9.9 Ethanol Production Using Different Fruit Wastes -- 9.9.1 Kinnow -- 9.9.2 Kinnow and Banana Peels -- 9.9.3 Mango/Banana Waste -- 9.9.4 Banana Waste -- 9.9.5 Mango Waste -- 9.9.6 Citrus Wastes -- 9.9.7 Beet Waste -- 9.9.8 Apple Pomace -- 9.9.9 Pineapple Wastes -- 9.9.10 Grape Pomace -- 9.9.11 Oil Palm -- 9.9.12 Fruit Peel -- 9.9.13 Pawpaw -- 9.9.14 Papaya -- 9.9.15 Date Palm -- 9.9.16 Mixed Fruit Wastes -- 9.9.17 Rambutan -- 9.9.18 Orange Peels -- 9.9.19 Cashew Apple Juice -- 9.9.20 Jamun and Mango -- 9.10 Conclusions -- References -- Chapter 10: Trends in Biodiesel Production from Algae and Animal Fat Wastes: Challenges and Prospects -- 10.1 Introduction -- 10.2 Biodiesel Production by Using Algae -- 10.3 Algae Production Processes and Conversion Processes -- 10.4 Algal Pretreatment for Biodiesel Production -- 10.5 Utilizing Microalgae to Produce Biodiesel -- 10.6 Process Used to Obtain Biodiesel from Algae -- 10.7 Biodiesel Production by Using Animal Fat Waste -- 10.8 Biodiesel Production Via Transesterification by Using Animal Fats -- 10.9 Characteristics of Biodiesel Which Is Obtained from Animals Feedstocks -- 10.10 Major Challenges and Future Prospects in Biodiesel Production from Vegetable Oil and Animal Fat Waste -- 10.11 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial fuel cells. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (296 pages)
    Edition: 1st ed.
    ISBN: 9789811571909
    Series Statement: Clean Energy Production Technologies Series
    DDC: 614.42
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: An Introduction to Algal Biofuels -- 1.1 Introduction -- 1.2 Algal Species Involved in Biofuel Production -- 1.3 Types of Biofuels Produced from Microalgae -- 1.3.1 Biodiesel -- 1.3.2 Biobutanol -- 1.3.3 Biogasoline -- 1.3.4 Methane -- 1.3.5 Ethanol -- 1.4 Nutrients and Growth Inputs for Algal Growth -- 1.4.1 Bold´s Basal Medium (BBM) -- 1.4.2 Acidified Bold´s Basal Medium -- 1.4.3 BG11 (Blue-Green Medium) -- 1.4.4 Chu10 Medium -- 1.4.5 Wastewater as a Source of Nitrogen and Phosphate -- 1.4.6 Impact of Growth Conditions on Microalgal Biomass -- 1.5 Different Microalgae Cultivation Methods -- 1.5.1 Open System -- 1.5.2 Closed Systems or Indoor Photobioreactors (PBRs) -- 1.6 Concept of Biorefineries -- 1.6.1 Evaluation of the Biorefinery Processes -- 1.7 Advantage and Disadvantage of Biofuels -- 1.8 Policies Regarding Algal Biofuels Worldwide -- 1.8.1 Indian National Policy of Biofuel 2008 -- 1.8.2 Biofuel Policies in the United States -- 1.8.3 Biofuel Policies in Canada -- 1.9 Companies Involved in Algal Biofuel Production -- 1.10 Conclusion -- References -- Chapter 2: Paper Mill Sludge as a Potential Feedstock for Microbial Ethanol Production -- 2.1 Introduction -- 2.2 Bioethanol: A Sustainable Renewable Biofuel -- 2.3 Common Feedstocks Used for Bioethanol Production -- 2.3.1 Rice Straw -- 2.3.2 Sugarcane Bagasse -- 2.3.3 Sugarcane Tops -- 2.3.4 Waste Paper -- 2.3.5 Paper Mill Sludge -- 2.4 Pulp and Paper Mill Industry -- 2.5 Paper-Making Process -- 2.6 Preparation of Raw Materials and Processing -- 2.6.1 Pulping -- 2.6.2 Pulp Washing and Chemical Recovery -- 2.6.3 Bleaching -- 2.6.4 Paper Pressing and Paper Making -- 2.6.5 Paper Mill Sludge as a By-Product -- 2.7 Indian Scenario of Paper Mills -- 2.8 Paper Mill Sludge -- 2.8.1 Paper Mill Sludge Composition. , 2.8.2 Environmental Impacts of Paper Mill Sludge -- 2.8.3 Industrial Uses of Paper Mill Sludge -- 2.8.3.1 Brick Manufacture -- 2.8.3.2 Anaerobic Digestion -- 2.8.3.3 Cement Base -- 2.8.3.4 Soil Conditioner -- 2.8.3.5 Bioethanol -- 2.9 Paper Mill Sludge Resource for Bioethanol Production -- 2.10 Steps Involved in Bioethanol Production -- 2.11 Pre-treatment Techniques Employed in Paper Mill Sludge -- 2.11.1 Acid Pre-treatment -- 2.11.2 Alkaline Pre-treatment -- 2.11.3 Pulping-Based Pre-treatment -- 2.11.4 Ultrasound Pre-treatment -- 2.11.5 Solvent-Based Pre-treatment -- 2.12 Challenges Faced in Available Pre-treatment Techniques -- 2.12.1 Acid-Based Pre-treatment -- 2.12.2 Alkali-Based Pre-treatment -- 2.12.3 Solvent-Based Pre-treatment -- 2.13 Conclusions and Future Prospects -- References -- Chapter 3: Application of Hydrolytic Enzymes in Biorefinery and Its Future Prospects -- 3.1 Introduction -- 3.2 Biomass Structure -- 3.3 Application of Hydrolytic Enzymes in Generation of Bioethanol from Biomass -- 3.3.1 Cellulase -- 3.3.1.1 Cellulases: Application in Biorefinery -- 3.3.2 Hemicellulases -- 3.3.2.1 Hemicellulases: Application in Biorefinery -- 3.3.3 Ligninolytic Enzymes -- 3.3.3.1 Ligninolytic Enzymes: Application in the Biorefinery -- Biological Delignification -- 3.3.4 Lytic Polysaccharide Monooxygenases (LPMOs) -- 3.3.4.1 LPMOs: Application in Biorefinery -- 3.3.5 Amylases -- 3.3.5.1 Amylases: Application in Biorefinery -- 3.3.6 Pectinases -- 3.3.7 Lipases -- 3.3.7.1 Lipases: Application in Biorefinery -- 3.3.8 Proteases -- 3.3.8.1 Proteases: Application in Biorefinery -- 3.4 Strategies Employed for Improving the Hydrolytic Enzyme Yield and Efficiency -- 3.4.1 Immobilization of Enzyme -- 3.4.2 Screening of New and Robust Isolates from Extreme Habitats -- 3.4.3 Genetic Engineering. , 3.4.4 Metagenomics Approach for the Identification of the Potential Hydrolytic Enzyme -- 3.5 Integrated Biorefineries: Future of Biomass-Based Biorefinery -- 3.6 Summary -- References -- Chapter 4: Cultivation of Microalgae: Effects of Nutrient Focus on Biofuels -- 4.1 Introduction -- 4.2 Types of Microalgae -- 4.3 Components Present in Algae -- 4.4 Cultivation of Microalgae -- 4.5 Nutritional Requirements of Algae Growth -- 4.5.1 Carbon -- 4.5.2 Nitrogen -- 4.5.3 Phosphorus -- 4.5.4 Macro- and Micronutrients -- 4.5.5 Other Considerations -- 4.6 Bioreactors for Microalgae Cultivation -- 4.6.1 Closed Reactor Designing for Microalgae Cultivation -- 4.6.2 Classification of Photobioreactors (PBRs) -- 4.6.2.1 Light -- 4.6.2.2 Mixing -- 4.6.2.3 Water Consumption -- 4.6.2.4 CO2 Consumption -- 4.6.2.5 O2 Removal -- 4.6.2.6 Nutrient Supply -- 4.6.2.7 Temperature -- 4.6.2.8 pH -- 4.6.3 Other Considerations -- 4.7 Conclusions -- References -- Chapter 5: Microalgae as an Efficient Feedstock Biomass for Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels from Microalgae Biomass -- 5.3 Harvesting -- 5.3.1 Sedimentation -- 5.3.2 Centrifugation -- 5.3.3 Flocculation -- 5.3.4 Coagulation -- 5.3.5 Floatation -- 5.3.6 Filtration -- 5.3.7 Electrophoresis -- 5.3.8 Ultrasonication -- 5.4 Lipid Extraction -- 5.4.1 Lipid Extraction by a Mechanical Process -- 5.4.2 Lipid Extraction by Chemicals and Solvents -- 5.4.2.1 Acid-Mediated Solvent System -- 5.4.2.2 Supercritical CO2 Fluid Technology -- 5.4.2.3 Ionic Liquids -- 5.4.3 Enzyme-Assisted Extraction -- 5.4.4 Surfactant-Assisted Extraction -- 5.4.5 Osmotic Pressure -- 5.5 Transesterification -- 5.5.1 Supercritical Conditions -- 5.6 Conclusions -- References -- Chapter 6: Microalgae Potential Feedstock for the Production of Biohydrogen and Bioactive Compounds -- 6.1 Introduction -- 6.2 Hydrogen Production. , 6.2.1 Photofermentation -- 6.2.2 Dark Fermentation -- 6.2.3 Hybrid System Using Photosynthetic and Dark Fermentative Bacteria -- 6.3 The Key Enzymes Associated with Hydrogen Production by Photosynthetic Bacteria -- 6.4 Medium Constituents and Cultivation Environments for Photosynthetic Bacteria -- 6.5 Various Parameters Influencing the Biohydrogen Production -- 6.6 Photobioreactor Design for Hydrogen Production -- 6.6.1 Solar Energy Excited Optical Fiber Photobioreactors -- 6.6.2 Photobioreactors with Immobilized Cells -- 6.6.3 The Plate-Type Photobioreactors -- 6.6.4 The LED Photobioreactors -- 6.7 Biomass Pretreatments Influence the H2 Production -- 6.8 Other Environmental Factor Influence on H2 Production -- 6.8.1 Effect of Thermophilic Conditions -- 6.8.2 Effect of Batch, Sequencing Batch, and Semicontinuous Reactions -- 6.8.3 Presence of Methanogenic Microorganisms -- 6.9 Bioactive Compounds -- 6.9.1 Introduction -- 6.9.2 Various Bioactive Compounds -- 6.9.3 Peptides and Polyunsaturated Fatty Acids -- 6.9.4 Anti-inflammatory Agents from Microalgae -- 6.9.5 Antibacterials -- 6.9.6 Antiviral and Anticancer Activities -- 6.10 Microalgae Preservation -- 6.10.1 Preservation by Lower Temperature -- 6.10.2 Preservation by Spray Drying -- 6.10.3 Preservation by Freeze Drying -- 6.10.4 Microencapsulation of Algae -- 6.11 Economic Concerns to Circular Economy -- 6.11.1 Future Prospective in Microalgal Research for Biofuels -- 6.11.2 Future Prospects on Bioactive Compounds -- 6.12 Conclusion -- References -- Chapter 7: Algal Biofuels: An Economic and Effective Alternative of Fossil Fuels -- 7.1 Introduction -- 7.2 Sources of Algal Biomass -- 7.3 Micro- and Macroalgae -- 7.3.1 Microalgae -- 7.3.1.1 Chlorella -- 7.3.1.2 Botryococcus braunii -- 7.3.1.3 Pleurochrysis carterae -- 7.3.1.4 Dunaliella salina -- 7.3.2 Macroalgae -- 7.3.2.1 Gracilaria chilensis. , 7.3.2.2 Sargassum angustifolium -- 7.3.2.3 Sea Lettuce: Ulva lactuca -- 7.4 Nutritional Requirements for the Algal Biomass Production -- 7.5 Energy Requirements for Life Cycle of Algal Biofuels -- 7.5.1 Carbon -- 7.5.2 Nitrogen -- 7.5.3 Phosphorus -- 7.5.4 Other Nutrients -- 7.6 Algal Cultivation Strategies -- 7.6.1 Open Pond Photobioreactor -- 7.6.2 Raceway Pond System -- 7.6.3 Closed-Photobioreactor -- 7.6.4 Hybrid Cultivation System -- 7.7 Harvesting and Drying of Algal Biomass -- 7.8 Biofuel Conversion -- 7.9 Improvement of Algal Biofuels Using Biotechnological Strategies -- 7.10 Economic Aspects of Algal Biofuels -- 7.11 Challenges and Future Perspective -- 7.12 Conclusion -- References -- Chapter 8: Nanocatalysts to Improve the Production of Microbial Fuel Applications -- 8.1 Introduction -- 8.2 Nanomaterial Classification -- 8.3 Nanoparticle Synthesis Techniques -- 8.3.1 Classification of Biofuels -- 8.3.2 Another Classification of Biofuel -- 8.3.2.1 Solid Biofuel -- 8.3.2.2 Liquid Biofuels -- 8.3.2.3 Gas Biofuels -- 8.4 Biofuel Production Methods -- 8.4.1 Gasification -- 8.4.2 Pyrolysis -- 8.4.3 Liquefaction -- 8.4.4 Enzymatic Hydrolysis -- 8.4.5 Transesterification -- 8.4.6 Anaerobic Digestion -- 8.5 Nanocatalysts in Biofuel Production -- 8.6 Nanoparticles in Biomass Pre-treatment -- 8.7 Use of Nanoparticles in the Production and Stability of Cellulase -- 8.8 Nanocatalyst for Biomass Gasification -- 8.9 Conclusion -- References -- Chapter 9: Microbial System: An Emerging Application in the Bioenergy Production -- 9.1 Introduction -- 9.2 Classification of Biofuels -- 9.2.1 First-Generation Biofuels -- 9.2.2 Second-Generation Biofuels -- 9.2.3 Third-Generation Biofuels -- 9.2.4 Fourth-Generation Biofuels -- 9.3 Sources of Biofuel Production -- 9.3.1 Agricultural Waste -- 9.3.2 Microalgae Biomass. , 9.4 Approaches for Microbial Strain Improvement.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Food—Microbiology. ; Renewable energy sources.
    Description / Table of Contents: 1 Utilization Of Food Waste For Biofuel Production -- 2 Bioenergy And Food Processing Waste -- 3 From fruit and vegetable waste to biofuel production-PART-I -- 4 From fruit and vegetable waste to biofuel production-PART-II -- 5 Recent advances in biogas production from food waste -- 6 Biogas from kitchen waste -- 7 Food processing by-products and waste utilization for bioethanol production -- 8 Utilization of fruit-vegetable waste and other feedstocks for bioethanol fermentation: New insight -- 9 Production of Bioethanol from fruit wastes: Recent Advances -- 10 Trends in biodiesel production from algae and animal fat wastes: challenges and prospects.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 278 p. 1 illus.)
    Edition: 1st ed. 2022.
    ISBN: 9789811908132
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Keywords: Biology—Technique. ; Microbiology. ; Biotechnology. ; Biology
    Description / Table of Contents: Chapter 1. Biotechnological approaches to enhance algae biofuel production -- Chapter 2. The use of omics technologies, random mutagenesis, and genetic transformation techniques to improve algae for biodiesel industry -- Chapter 3. Algal butanol production: recent developments -- Chapter 4. Algal synthesis of gold nanoparticles: applications in bioenergy -- Chapter 5. Challenges assessment in economic Algal biofuel Production -- Chapter 6. Influence of culture conditions on the microalgae biomass and lipid accumulation -- Chapter 7. Advanced genetic approaches towards custom design microalgae for fourth-generation biofuels -- Chapter 8. Algal biofuel production from municipal waste waters -- Chapter 9. Positive influence and future perspective of marine alga on biofuel production -- Chapter 10. Algae bacterial mixed culture for waste to wealth conversation: a case study.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XI, 295 p. 1 illus.)
    Edition: 1st ed. 2023.
    ISBN: 9789811968068
    Series Statement: Clean Energy Production Technologies
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Microbial ecology. ; Industrial microbiology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9789811968105
    Series Statement: Clean Energy Production Technologies Series
    DDC: 662.88
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...