GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 176 (1-2). pp. 25-41.
    Publication Date: 2018-01-17
    Description: A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, can be best explained by compositional changes between adjoining basement units to the north and south. South of the Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation Front and the northern limit of the Zechstein deposits coincide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 173 (1-4). pp. 83-93.
    Publication Date: 2019-05-08
    Description: A deep Seismic reflection profile collected by DEKORP and BELCORP in the western Rhenish Massif was supplemented by wide-angle measurements. Signals from a vibrator source were successfully recorded to a distance of 60 km. A passive recording array was operated that recorded all shots along the profile. The wide-angle and near-vertical data were used to construct a velocity model for the profile. Most of the wide-angle reflections coincide with strong near-vertical reflections or bands of high reflectivity. The North Variscan Deformation Front, seen as a prominent shallow reflection on many profiles in this region, separates an upper crust with rather nigh velocities from a layer with lower velocities underneath. At a depth of 20–22 km a thin (2–3 km thick) layer of high velocities is found. The Moho is not reflective either in the near-vertical or in the wide-angle data, suggesting the presence of a thick crust-mantle transition zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 94 (B11). pp. 16023-16035.
    Publication Date: 2018-03-06
    Description: A seismic refraction profile recorded along the geologic strike of the Chugach Mountains in southern Alaska shows three upper crustal high-velocity layers (6.9, 7.2, and 7.6 km/s) and a unique pattern of strongly focussed echelon arrivals to a distance of 225 km. The group velocity of the ensemble of echelon arrivals is 6.4 km/s. Modeling of this profile with the reflectivity method reveals that the echelon pattern is due to peg-leg multiples generated from with a low-velocity zone between the second and third upper crustal high-velocity layers. The third high-velocity layer (7.6 km/s) is underlain at 18 km depth by a pronounced low-velocity zone that produces a seismic shadow wherein zone peg-leg multiples are seen as echelon arrivals. The interpretation of these echelon arrivals as multiples supersedes an earlier interpretation which attributed them to successive primary reflections arising from alternating high- and low-velocity layers. Synthetic seismogram modeling indicates that a low-velocity zone with transitional upper and lower boundaries generates peg-leg multiples as effectively as one with sharp boundaries. No PmP or Pn arrivals from the subducting oceanic Moho at 30 km depth beneath the western part of the line are observed on the long-offset (90-225 km) data. This may be due to a lower crustal waveguide whose top is the high-velocity (7.6 km/s) layer and whose base is the Moho. A deep (~54 km) reflector is not affected by the waveguide and has been identified in the data. Although peg-leg multiples have been interpreted on some long-range refraction profiles that sound to upper mantle depths, the Chugach Mountains profile is one of the few crustal refraction profiles where peg-leg multiples are clearly observed. This study indicates that multiple and converted phases may be more important in seismic refraction/wide-angle reflection profiles than previously recognized.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-07-16
    Description: The convergent margin of the central Sunda Arc in Indonesia was the target of a reflection and refraction seismic survey conducted in 1998 and 1999. Along two seismic lines across the subduction complex off southern Sumatra and off Sunda Strait, coincident multichannel and wide-angle data were collected, complemented by two refraction strike-lines in the forearc basin off Sumatra. The combined analysis of the acquired data allows us to present a detailed model of the subduction zone where initiation of strain partitioning occurs due to the onset of oblique subduction. The dip of the subducted plate is well defined along both dip-lines and a lateral increase from 5° to 7° from beneath the outer high off Sumatra to Sunda Strait is supported by complementary gravity modelling. The downgoing slab is traced to a depth of more than 30km. On both reflection dip-lines, a clearly developed backstop structure underlying a trench slope break defines the landward termination of the active accretionary prism and separates it from the outer high. Active subduction accretion is supported by laterally increasing velocities between the deformation front and the active backstop structure. Seismic velocities of the outer high are moderate along both lines (〈5.8kms−1 at 20km depth), suggesting a sedimentary composition. Reduced reflectivity beneath a rugged top basement traced along the outer high of both dip-lines supports a high degree of deformation and material compaction. Several kilometres of sediment has accumulated in the forearc domain, although a distinct morphological basin is only recognized off southern Sumatra and is not developed off Sunda Strait. The bathymetric elevation of the Java shelf that is encountered in the southern Sunda Strait corresponds to increased velocities of a basement high there and is connected to extensional structures of the Sunda Strait transtensional basin. Differences observed in the morphology of the forearc domain are also reflected in the lower crustal structure. Off southern Sumatra, the velocity–depth model clearly indicates a continental-type crust underlying the forearc basin, whereas lower velocities are found beneath the Sunda Strait forearc domain. Off Sumatra, some 3-D constraint on the upper plate structure is gained from the refraction strike-lines, which in addition is supported by synthetic data modelling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Highlights • The Lofoten/Vesterålen margin has less Early Cenozoic lava flows than believed. • Breakup of the L/V margin is delayed ∼1 m.y. from the Vøring Plateau to the south. • Late arrival of the Iceland Plume may explain delayed breakup and prolonged extension. The Early Eocene continental breakup was magma-rich and formed part of the North Atlantic Igneous Province. Extrusive and intrusive magmatism was abundant on the continental side, and a thick oceanic crust was produced up to a few m.y. after breakup. However, the extensive magmatism at the Vøring Plateau off mid-Norway died down rapidly northeastwards towards the Lofoten/Vesterålen Margin. In 2003 an Ocean Bottom Seismometer profile was collected from mainland Norway, across Lofoten, and into the deep ocean. Forward/inverse velocity modeling by raytracing reveals a continental margin transitional between magma-rich and magma-poor rifting. For the first time a distinct lower-crustal body typical for volcanic margins has been identified at this outer margin segment, up to 3.5. km thick and ∼50. km wide. On the other hand, expected extrusive magmatism could not be clearly identified here. Strong reflections earlier interpreted as the top of extensive lavas may at least partly represent high-velocity sediments derived from the shelf, and/or fault surfaces. Early post-breakup oceanic crust is moderately thickened (∼8. km), but is reduced to 6. km after 1. m.y. The adjacent continental crystalline crust is extended down to a minimum of 4.5. km thickness. Early plate spreading rates derived from the Norway Basin and the northern Vøring Plateau were used to calculate synthetic magnetic seafloor anomalies, and compared to our ship magnetic profile. It appears that continental breakup took place at ∼53.1. Ma, ∼1. m.y. later than on the Vøring Plateau, consistent with late strong crustal extension. The low interaction between extension and magmatism indicates that mantle plume material was not present at the Lofoten Margin during initial rifting, and that the observed excess magmatism was created by late lateral transport from a nearby pool of plume material into the lithospheric rift zone at breakup time.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 94 (B1). pp. 625-636.
    Publication Date: 2018-03-06
    Description: During a seismic reflection survey conducted by the California Consortium for Crustal Studies in the Basin and Range Province west of the Whipple Mountains, SE California, a piggyback experiment was carried out to collect intermediate offset data (12–31 km). These data were obtained by recording the Vibroseis energy with a second, passive recording array, deployed twice at fixed positions at opposite ends of the reflection lines. The reflection midpoints fall into a 3-km-wide and 15-km-long region in Vidal Valley, roughly parallel to a segment of one of the near-vertical reflection profiles. This data set makes three unique contributions to the geophysical study of this region. (1) From forward modeling of the observed travel times using ray-tracing techniques, a shallow layer with velocities ranging from 6.0 to 6.5 km/s was found. This layer dips to the south from 2-km depth near the Whipple Mountains to a depth of 5-km in Rice Valley. These depths correspond closely to the westward projection of the Whipple detachment fault, which is exposed 1 km east of the near-vertical profiles in the Whipple Mountains. (2) On the near-vertical profile, the reflections from the mylonitically deformed lower plate at upper crustal and mid crustal depths are seen to cease underneath a sedimentary basin in Vidal Valley. However, the piggyback data, which undershoot this basin, show that these reflections are continuous beneath the basin. Thus near-surface energy transmission problems were responsible for the apparent lateral termination of the reflections on the near-vertical reflection profile. (3) The areal distribution of the midpoints allows us to construct a quasi-three-dimensional image on perpendicular profiles; at the cross points we determined the true strike and dip of reflecting horizons. This analysis shows that the reflections from the mylonitically deformed lower plate dip to the southwest westward of the Whipple Mountains and dip to the south southward of the Turtle Mountains. The results of this study support the interpretation of crustal reflectivity in the near-vertical reflection profiles to be related to the mid-Tertiary episode of extension which produced the Whipple metamorphic core complex. This association geometrically suggests a more regionally distributed mechanism for crustal thinning as compared with single detachment fault models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-05
    Description: The Møre Margin in the NE Atlantic represents a dominantly passive margin with an unusual abrupt transition from alpine morphology onshore to a deep sedimentary basin offshore. In order to study this transition in detail, three ocean bottom seismometer profiles with deep seismic reflection and refraction data were acquired in 2009; two dip-profiles which were extended by land stations, and one tie-profile parallel to the strike of the Møre–Trøndelag Fault Complex. The modeling of the wide-angle seismic data was performed with a combined inversion and forward modeling approach and validated with a 3D-density model. Modeling of the geophysical data indicates the presence of a 12–15 km thick accumulation of sedimentary rocks in the Møre Basin. The modeling of the strike profile located closer to land shows a decrease in crustal velocity from north to south. Near the coast we observe an intra-crustal reflector under the Trøndelag Platform, but not under the Slørebotn Sub-basin. Furthermore, two lower crustal high-velocity bodies are modeled, one located near the Møre Marginal High and one beneath the Slørebotn Sub-basin. While the outer lower crustal body is modeled with a density allowing an interpretation as magmatic underplating, the inner body has a density close to mantle density which might suggest an origin as an eclogized body, formed by metamorphosis of lower crustal gabbro during the Caledonian orogeny. The difference in velocity and extent of the lower crustal bodies seems to be controlled by the Jan Mayen Lineament, suggesting that the lineament represents a pre-Caledonian structural feature in the basement.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-28
    Description: Geophysical research in subduction zones is based on bathymetric, seismic, magnetic, gravimetric measurement as well as numerical and analog modeling. Their combined interpretation leads to an image of the sub-surface and the dynamic processes related with subduction type and to estimate fluid and mass transfer within the subduction complex. The top of the subducting oceanic plate can be imaged seismically, which could have pracical implications for more precise earthquake hazard analysis in the areas investigated
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Oxford Univ. Press
    In:  Geophysical Journal International, 202 (1). pp. 454-463.
    Publication Date: 2019-09-23
    Description: The Murray Ridge/Dalrymple Trough system forms the boundary between the Indian and Arabian plates in the northern Arabian Sea. Geodetic constraints from the surrounding con- tinents suggest that this plate boundary is undergoing oblique extension at a rate of a few millimetres per year. We present wide-angle seismic data that constrains the composition of the Ridge and of adjacent lithosphere beneath the Indus Fan. We infer that Murray Ridge, like the adjacent Dalrymple Trough, is underlain by continental crust, while a thin crustal section beneath the Indus Fan represents thinned continental crust or exhumed serpentinized mantle that forms part of a magma-poor rifted margin. Changes in crustal structure across the Murray Ridge and Dalrymple Trough can explain short-wavelength gravity anomalies, but a long-wavelength anomaly must be attributed to deeper density contrasts that may result from a large age contrast across the plate boundary. The origin of this fragment of continental crust remains enigmatic, but the presence of basement fabrics to the south that are roughly parallel to Murray Ridge suggests that it separated from the India/Seychelles/Madagascar block by extension during early breakup of Gondwana.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...