GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-13
    Description: Breakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50-80 °C, significantly smaller than previously suggested.
    Keywords: depth-dependent extension; geodynamic modeling; magmatism; passive margins
    Type: Dataset
    Format: application/gzip, 1.7 GBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Theunissen, Thomas; Huismans, Ritske S (2019): Long‐Term Coupling and Feedback Between Tectonics and Surface Processes During Non‐Volcanic Rifted Margin Formation. Journal of Geophysical Research: Solid Earth, 124(11), 12323-12347, https://doi.org/10.1029/2018JB017235
    Publication Date: 2023-01-13
    Description: Here we present high-resolution 2-D coupled tectonic-surface processes modeling of extensional basin formation. We focus on understanding feedbacks between erosion and deposition and tectonics during rift and passive margin formation. We test the combined effects of crustal rheology and varying surface process efficiency on structural style of rift and passive margin formation. The forward models presented here allow to identify the following four feedback relations between surface processes and tectonic deformation during rifted margin formation. (1) Erosion and deposition promote strain localization and enhance large offset asymmetric normal fault growth. (2) Progressive infill from proximal to more distal half-grabens promotes the formation of synthetic sets of basin ward dipping normal faults for intermediate crustal strength cases. (3) Sediment loading on top of undeformed crustal rafts in weak crust cases enhances mid and lower crustal flow resulting in sag basin subsidence. (4) Interaction of high sediment supply to the distal margin in very weak crust cases results in detachment based rollover sedimentary basins. Our models further show that erosion efficiency and drainage area provide a first order control on sediment supply during rifting where rift related topography is relatively quickly eroded. Long term sustained sediment supply to the rift basins requires elevated onshore drainage basins. We discuss similar variations in structural style observed in natural systems and compare them with the feedbacks identified here.
    Keywords: File format; File name; File size; fluvial erosion; geodynamic modelling; normal faults; rifting; surface processes; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 68 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-30
    Description: Extension of the continental lithosphere can lead to the formation of rifted margins with contrasting tectonic and geomorphologic characteristics. Many of these characteristics depend on the manner extension is spatially distributed. Here we investigate the feedback between tectonics and the transfer of material at the surface resulting from erosion, transport, and sedimentation and discuss how they influence the rifting process. We use large-scale (1200 x 600 km), high-resolution (1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model. We test the sensitivity of the coupled models to varying crust-lithospheric rheology and erosional efficiency. We confirm that the development and long-term support of topography is dependent on the strength of the coupling between the crust and the mantle lithosphere. Strong coupling promotes high topography as the integrated strength of the lithosphere is sufficient to support the additional stress. Weak coupling results in the stress being relaxed via viscous flow in the middle/lower crust and leads to more subdued topography. Erosion and transport of sediment modulates this behaviour but has only minor effect on the overall structure of the rift. High erosion efficiency counters the development of high topography and creates complex landscape morphologies while low erosion efficiency allows for longer standing high topography and results in more simple landscape morphologies. The transfer of mass between the continent and the basin alter the stress field at the onshore-offshore transition and facilitates the development of faults, increasing their offsets and keeping them active over a longer period.
    Keywords: erosion; File format; File name; File size; lithosphere; numerical modeling; passive margins; rifting; surface processes; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The Palaeocene–Eocene Thermal Maximum (PETM) was a global warming event of 5–6 °C around 56 million years ago caused by input of carbon into the ocean and atmosphere. Hydrothermal venting of greenhouse gases produced in contact aureoles surrounding magmatic intrusions in the North Atlantic Igneous Province have been proposed to play a key role in the PETM carbon-cycle perturbation, but the precise timing, magnitude and climatic impact of such venting remains uncertain. Here we present seismic data and the results of a five-borehole transect sampling the crater of a hydrothermal vent complex in the Northeast Atlantic. Stable carbon isotope stratigraphy and dinoflagellate cyst biostratigraphy reveal a negative carbon isotope excursion coincident with the appearance of the index taxon Apectodinium augustum in the vent crater, firmly tying the infill to the PETM. The shape of the crater and stratified sediments suggests large-scale explosive gas release during the initial phase of vent formation followed by rapid, but largely undisturbed, diatomite-rich infill. Moreover, we show that these vents erupted in very shallow water across the North Atlantic Igneous Province, such that volatile emissions would have entered the atmosphere almost directly without oxidation to CO 2 and at the onset of the PETM.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...