GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lebedeva-Ivanova, Nina; Gaina, Carmen; Minakov, Alexander; Kashubin, Sergei (2019): ArcCRUST: Arctic Crustal Thickness From 3‐D Gravity Inversion. Geochemistry, Geophysics, Geosystems, 20(7), 3225-3247, https://doi.org/10.1029/2018GC008098
    Publication Date: 2023-01-30
    Description: The ArcCRUST model consists of crustal thickness and estimated crustal thinning factors grids for the High Arctic and Circum-Arctic regions (north of 67°N). This model is derived by using 3D forward and inverse gravity modelling. Updated sedimentary thickness grid, an oceanic lithosphere age model together with inferred microcontinent rifting ages, variable crystalline crust and sediment densities, and dynamic topography models constrain this inversion. We use published high-quality 2D seismic crustal-scale models to create a database of Depths to Seismic Moho (DSM) profiles. To check the quality of the ArcCRUST model, we have performed a statistical analysis of misfits between the ArcCRUST Moho depths and DSM values. Systematic analysis of the misfits within the Arctic sedimentary basins provides information about tectonic processes unaccounted by the assumed model of pure-shear lithospheric extension. In particular, our model implies a less-dense and/or thin mantle lithosphere underneath microcontinents in the deep Arctic Ocean where the ArcCRUST depth to Moho values exceed the depth to seismic Moho. A systematically larger gravity-derived crustal thickness (ca. 3 km) under the western and northern Greenland Sea points to a hotter upper mantle implied by the seismic tomography models in the North Atlantic.
    Keywords: ArcCRUST-AgeOceanicLithosphere; ArcCRUST-CrustalThickness; ArcCRUST-Moho; ArcCRUST-SedimentThickness; Arctic; crutsal thickness; Event label; File content; File format; File name; File size; Moho; oceanic lithosphere; sediment thickness; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: The continuation of the Caledonides into the Barents Sea has long been a subject of discussion, and two major orientations of the Caledonian deformation fronts have been suggested: NNW-SSE striking and NE-SW striking. A regional NW-SE oriented ocean bottom seismic profile across the western Barents Sea was acquired in 2014. In this paper we map the crust and upper mantle structure along this profile in order to discriminate between different interpretations of Caledonian structural trends and orientation of rift basins in the western Barents Sea. Modeling of P-wave travel times has been done using a ray-tracing method, and combined with gravity modeling. The results show high P-wave velocities (4 km/s) close to the seafloor, as well as localized sub-horizontal high velocity zones (6.0 km/s and 6.9 km/s) at shallow depths which are interpreted as magmatic sills. Refractions from the top of the crystalline basement together with reflections from the Moho give basement velocities from 6.0 km/s at the top to 6.7 km/s at the base of the crust. P-wave travel time modeling of the OBS profile indicate an eastwards increase in velocities from 6.4 km/s to 6.7 km/s at the base of the crystalline crust, and the western part of the profile is characterized by a higher seismic reflectivity than the eastern part. This change in seismic character is consistent with observations from vintage reflection seismic data and is interpreted as a Caledonian suture extending through the Barents Sea, separating Barentsia and Baltica. Local deepening of Moho (from 27 km to 33 km depth) creates “root structures” that can be linked to the Caledonian compressional deformation or a suture zone imprinted in the lower crust. Our model supports a separate NE-SW Caledonian trend extending into the central Barents Sea, branching off from the northerly trending Svalbard Caledonides, implying the existence of Barentsia as an independent microcontinent between Laurentia and Baltica.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-19
    Description: A seismic refraction and reflection tomography experiment was performed across the igneous province east of Svalbard which is a part of the Cretaceous High Arctic Large Igneous Province. Seismic travel times from 12 ocean bottom seismometers/hydrophones deployed along a 170 km line are inverted to produce smooth 2D images of the crustal P-wave velocity and geometry of the acoustic basement and Moho. The inversion of travel times was complemented by forward elastic wave propagation modeling. Integration with onshore geology as well as multichannel seismic, magnetic and gravity data have provide additional constraints used in the geological interpretation. The seismic P-wave velocity increases rapidly with depth, starting with 3 km/s at the sea floor and reaching 5.5 km/s at the bottom of the upper sedimentary layer. The thickness of this layer increases eastward from 2 km to 3.5 km. On average the P-wave velocity in the crystalline crust increases with depth from 5.5 km/s to 6.8 km/s. The crustal thickness is typical for continental shelf regions (30–34 km). Finger-shaped high-velocity anomalies, one reaching 12% and two of 4–6% velocity perturbation, are obtained. These velocity anomalies are concomitant with Lower Cretaceous basaltic lava flows and sills in the shallow sediments and elongated gravity and magnetic highs, traced towards the northern Barents Sea passive continental margin. We interpret the obtained velocity anomalies as signatures of dikes emplaced in the basement during breakup and subsequent spreading in the Arctic Amerasia Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    facet.materialart.
    Unknown
    Geological Society of America (GSA)
    Publication Date: 2012-02-01
    Description: The Cenozoic sedimentary record revealed by the Integrated Ocean Drilling Program's Arctic Coring Expedition (ACEX) to the Lomonosov Ridge microcontinent in 2004 is characterized by an unconformity attributed to the period 44–18 Ma. According to conventional thermal kinematic models, the microcontinent should have subsided to 〉1 km depth owing to rifting and subsequent separation from the Barents–Kara Sea margin at 56 Ma. We propose an alternative model incorporating a simple pressure-temperature (P-T) relation for mantle density. Using this model, we can explain the missing stratigraphic section by post-breakup uplift and erosion. The pattern of linear magnetic anomalies and the spreading geometry imply that the generation of oceanic crust in the central Eurasia Basin could have been restricted and confined by non-volcanic thinning of the mantle lithosphere at an early stage (ca. 56–40 Ma). In response to a rise in temperature, the mantle mineral composition may have changed through breakdown of spinel peridotite and formation of less dense plagioclase peridotite. The consequence of lithosphere heating and related mineral phase transitions would be post-breakup uplift followed by rapid subsidence to the deep-water environment observed on the Lomonosov Ridge today.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...