GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Martínez-Pérez, Clara; Mohr, Wiebke; Löscher, Carolin R; Dekaezemacker, Julien; Littmann, Sten; Yilmaz, Pelin; Lehnen, Christina; Fuchs, Bernhard M; Lavik, Gaute; Schmitz, Ruth A; LaRoche, Julie; Kuypers, Marcel MM (2016): The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nature Microbiology, 1, 16163, https://doi.org/10.1038/nmicrobiol.2016.163
    Publication Date: 2023-10-28
    Description: Microbial dinitrogen (N2) fixation, the nitrogenase enzyme-catalysed reduction of N2 gas into biologically available ammonia, is the main source of new nitrogen (N) in the ocean. For more than 50 years, oceanic N2 fixation has mainly been attributed to the activity of the colonial cyanobacterium Trichodesmium. Other smaller N2-fixing microorganisms (diazotrophs)--in particular the unicellular cyanobacteria group A (UCYN-A)--are, however, abundant enough to potentially contribute significantly to N2 fixation in the surface waters of the oceans. Despite their abundance, the contribution of UCYN-A to oceanic N2 fixation has so far not been directly quantified. Here, we show that in one of the main areas of oceanic N2 fixation, the tropical North Atlantic7, the symbiotic cyanobacterium UCYN-A contributed to N2 fixation similarly to Trichodesmium. Two types of UCYN-A, UCYN-A1 and -A2, were observed to live in symbioses with specific eukaryotic algae. Single-cell analyses showed that both algae-UCYN-A symbioses actively fixed N2, contributing ~20% to N2 fixation in the tropical North Atlantic, revealing their significance in this region. These symbioses had growth rates five to ten times higher than Trichodesmium, implying a rapid transfer of UCYN-A-fixed N into the food web that might significantly raise their actual contribution to N2 fixation. Our analysis of global 16S rRNA gene databases showed that UCYN-A occurs in surface waters from the Arctic to the Antarctic Circle and thus probably contributes to N2 fixation in a much larger oceanic area than previously thought. Based on their high rates of N2 fixation and cosmopolitan distribution, we hypothesize that UCYN-A plays a major, but currently overlooked role in the oceanic N cycle.
    Keywords: Center for Marine Environmental Sciences; Climate - Biogeochemistry Interactions in the Tropical Ocean; MARUM; SFB754
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2023-10-28
    Keywords: Bacterial nitrogen fixation, cluster; Bacterial nitrogen fixation, cluster, standard deviation; Bacterial nitrogen fixation, total; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; Latitude of event; Longitude of event; M77/3; M77/3-CTD109; M77/3-CTD110; M77/3-CTD13; M77/3-CTD14; M77/3-CTD15; M77/3-CTD17; M77/3-CTD19; M77/3-CTD21; M77/3-CTD24; M77/3-CTD25; M77/3-CTD4; M77/3-CTD55; M77/3-CTD57; M77/3-CTD58; M77/3-CTD59; M77/3-CTD6; M77/3-CTD60; M77/3-CTD62; M77/3-CTD63; M77/3-CTD67; M77/3-CTD7; M77/3-CTD70; M77/3-CTD71; Meteor (1986); Sample code/label; SFB754; Standard deviation; Station label
    Type: Dataset
    Format: text/tab-separated-values, 5138 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2023-10-28
    Keywords: Bacterial nitrogen fixation, cluster; Bacterial nitrogen fixation, cluster, standard deviation; Bacterial nitrogen fixation, total; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; Latitude of event; Longitude of event; M77/4; M77/4_143; M77/4_152; M77/4_160; M77/4-CTD14; M77/4-CTD18; M77/4-CTD23; M77/4-CTD24; M77/4-CTD29; M77/4-CTD34; M77/4-CTD38; M77/4-CTD39; M77/4-CTD40; M77/4-CTD58; M77/4-CTD68; M77/4-CTD73; M77/4-CTD75; M77/4-CTD79; M77/4-CTD81; M77/4-CTD82; M77/4-CTD90; Meteor (1986); Sample code/label; SFB754; Standard deviation; Station label
    Type: Dataset
    Format: text/tab-separated-values, 1674 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-10-28
    Keywords: Archael_amoA, standard deviation; Archael_amoA distribution; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; Functional gene beta amoA; Functional gene beta amoA, standard deviation; Functional gene hzo; Functional gene hzo, standard deviation; Functional gene nirS; Functional gene nirS, standard deviation; Functional gene nrfA; Functional gene nrfA, standard deviation; Latitude of event; Longitude of event; M77/3; M77/3-CTD109; M77/3-CTD110; M77/3-CTD13; M77/3-CTD14; M77/3-CTD15; M77/3-CTD17; M77/3-CTD19; M77/3-CTD21; M77/3-CTD23; M77/3-CTD24; M77/3-CTD25; M77/3-CTD4; M77/3-CTD55; M77/3-CTD57; M77/3-CTD58; M77/3-CTD59; M77/3-CTD6; M77/3-CTD60; M77/3-CTD62; M77/3-CTD63; M77/3-CTD67; M77/3-CTD7; M77/3-CTD70; M77/3-CTD71; Meteor (1986); Sample code/label; SFB754; Station label
    Type: Dataset
    Format: text/tab-separated-values, 3820 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-03-06
    Description: The data is from a mesocosm experiment set up outside Lima, Peru to study the influence of upwelling of oxygen minimum zone (OMZ) water. The mesocosm bags were 2 m in diameter and extended from the surface down to 19 m depth, where the last 2 m was a conical sediment trap. Eight mesocosm bags were used and they were moored at 12.0555°S; 77.2348°W just north of Isla San Lorenzo where the water depth is ~30 m. The experiment was started 25 February 2017 by closing the mesocosm bags and were run for 50 days. Two treatments were used (water with different OMZ signature), each with four replicates. Water (100 m3) from the OMZ was collected from two locations and depths. The first was collected from 12.028323°S; 77.223603°W from 30 m depth, and the second one from 12.044333°S; 77.377583°W from 70 m depth. The original aim was to collect severe and moderate OMZ signature water (differing in e.g. nitrate concentrations) from the first and second site, respectively. This assumption was based on long-term monitoring data, however, the chemical properties (e.g. nitrate concentration) was more similar in these water masses than anticipated, rather reflecting low and very low OMZ signatures from site 1 and 2 respectively. To have a baseline of measured variables, the mesocosms where closed and environmental and biological variables were determined over 10 days. After this period, the OMZ water was added to the mesocosms in two steps on day 11 and 12 after the enclosure of the mesocosms. As the mesocosms contain a specific volume (~54 m3), the process of adding the OMZ water started with first removing water from the mesocosms. The water removed (~20 m3) was pumped out from 11-12 m depth. A similar volume of OMZ water, from both collection sites, was then pumped into four replicate mesocosms each. The OMZ water was pumped into the mesocosms moving the input hose between 14-17 m depth. The water collected at 30 m depth was pumped into mesocosms M1, M4, M5 and M8 having a low OMZ signature and water from 70 m depth into mesocosms M2, M3, M6 and M7 having a very low OMZ signature. Due a halocline at 12 m depth (see below), the added OMZ water was not immediately mixed throughout the mesocosm bag. Sampling took place every second day over a period of 50 days, and all variables were taken with an integrated water sampler (HydroBios, IWS) pre-programed to fill from 0 – 10 m depth and all samples consisted of this integrated samples from the upper 10 m. The samples were stored dark in cool boxes and brought back to the laboratory and processed right away. Sampling took place in the morning, and the samples were usually back in the laboratory around noon. Measured variables included inorganic nutrients, dissolved organic nutrients, extracellular enzyme activity: leucine aminopeptidase (LAP) and alkaline phosphatase activity (APA), and the phytoplankton and bacterial community composition.
    Keywords: alkaline phosphatase activity; Alkaline phosphatase activity; AQUACOSM; Bacteria; beta-Carotene; Biogenic silica; Carbon, organic, particulate; Chlorophyll a; chlorophyll-a; Climate - Biogeochemistry Interactions in the Tropical Ocean; Cryptophytes; DATE/TIME; Day of experiment; Diadinoxanthin; Diatoxanthin; Dinoxanthin; Experimental treatment; Fluorescence, dissolved organic matter; Fucoxanthin; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; leucine aminopeptidase; Leucine aminopeptidase activity; Maximum photochemical quantum yield of photosystem II; MESO; Mesocosm experiment; Mesocosm label; Microphytoplankton; Nanoplankton; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; Nitrogen, inorganic, dissolved; Nitrogen, organic, dissolved; Nitrogen, organic, particulate; oxygen minimum zone; Phosphate; Phosphorus, organic, dissolved; Phosphorus, organic, particulate; Phytoplankton; Phytoplankton cells, chains; Phytoplankton cells, phycocyanin-containing (FL-4); Picoeukaryotes; Relative fluorescence intensity, ratio; SFB754; Silicate, dissolved; Synechococcus
    Type: Dataset
    Format: text/tab-separated-values, 8073 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-03-06
    Description: The data is from a mesocosm experiment set up outside Lima, Peru to study the influence of upwelling of oxygen minimum zone (OMZ) water. The mesocosm bags were 2 m in diameter and extended from the surface down to 19 m depth, where the last 2 m was a conical sediment trap. Eight mesocosm bags were used and they were moored at 12.0555°S; 77.2348°W just north of Isla San Lorenzo where the water depth is ~30 m. The experiment was started 25 February 2017 by closing the mesocosm bags and were run for 50 days. Two treatments were used (water with different OMZ signature), each with four replicates. Water (100 m3) from the OMZ was collected from two locations and depths. The first was collected from 12.028323°S; 77.223603°W from 30 m depth, and the second one from 12.044333°S; 77.377583°W from 70 m depth. The original aim was to collect severe and moderate OMZ signature water (differing in e.g. nitrate concentrations) from the first and second site, respectively. This assumption was based on long-term monitoring data, however, the chemical properties (e.g. nitrate concentration) was more similar in these water masses than anticipated, rather reflecting low and very low OMZ signatures from site 1 and 2 respectively. To have a baseline of measured variables, the mesocosms where closed and environmental and biological variables were determined over 10 days. After this period, the OMZ water was added to the mesocosms in two steps on day 11 and 12 after the enclosure of the mesocosms. As the mesocosms contain a specific volume (~54 m3), the process of adding the OMZ water started with first removing water from the mesocosms. The water removed (~20 m3) was pumped out from 11-12 m depth. A similar volume of OMZ water, from both collection sites, was then pumped into four replicate mesocosms each. The OMZ water was pumped into the mesocosms moving the input hose between 14-17 m depth. The water collected at 30 m depth was pumped into mesocosms M1, M4, M5 and M8 having a low OMZ signature and water from 70 m depth into mesocosms M2, M3, M6 and M7 having a very low OMZ signature. Due a halocline at 12 m depth (see below), the added OMZ water was not immediately mixed throughout the mesocosm bag. Sampling took place every second day over a period of 50 days, and all variables were taken with an integrated water sampler (HydroBios, IWS) pre-programed to fill from 0 – 10 m depth and all samples consisted of this integrated samples from the upper 10 m. The samples were stored dark in cool boxes and brought back to the laboratory and processed right away. Sampling took place in the morning, and the samples were usually back in the laboratory around noon. Measured variables included inorganic nutrients, dissolved organic nutrients, extracellular enzyme activity: leucine aminopeptidase (LAP) and alkaline phosphatase, and the phytoplankton and bacterial community composition.
    Keywords: alkaline phosphatase activity; AQUACOSM; Bacteria; chlorophyll-a; Climate - Biogeochemistry Interactions in the Tropical Ocean; leucine aminopeptidase; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; oxygen minimum zone; Phytoplankton; SFB754
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-03-06
    Description: The data is from a mesocosm experiment set up outside Lima, Peru to study the influence of upwelling of oxygen minimum zone (OMZ) water. The mesocosm bags were 2 m in diameter and extended from the surface down to 19 m depth, where the last 2 m was a conical sediment trap. Eight mesocosm bags were used and they were moored at 12.0555°S; 77.2348°W just north of Isla San Lorenzo where the water depth is ~30 m. The experiment was started 25 February 2017 by closing the mesocosm bags and were run for 50 days. Two treatments were used (water with different OMZ signature), each with four replicates. Water (100 m3) from the OMZ was collected from two locations and depths. The first was collected from 12.028323°S; 77.223603°W from 30 m depth, and the second one from 12.044333°S; 77.377583°W from 70 m depth. The original aim was to collect severe and moderate OMZ signature water (differing in e.g. nitrate concentrations) from the first and second site, respectively. This assumption was based on long-term monitoring data, however, the chemical properties (e.g. nitrate concentration) was more similar in these water masses than anticipated, rather reflecting low and very low OMZ signatures from site 1 and 2 respectively. To have a baseline of measured variables, the mesocosms where closed and environmental and biological variables were determined over 10 days. After this period, the OMZ water was added to the mesocosms in two steps on day 11 and 12 after the enclosure of the mesocosms. As the mesocosms contain a specific volume (~54 m3), the process of adding the OMZ water started with first removing water from the mesocosms. The water removed (~20 m3) was pumped out from 11-12 m depth. A similar volume of OMZ water, from both collection sites, was then pumped into four replicate mesocosms each. The OMZ water was pumped into the mesocosms moving the input hose between 14-17 m depth. The water collected at 30 m depth was pumped into mesocosms M1, M4, M5 and M8 having a low OMZ signature and water from 70 m depth into mesocosms M2, M3, M6 and M7 having a very low OMZ signature. Due a halocline at 12 m depth (see below), the added OMZ water was not immediately mixed throughout the mesocosm bag. Sampling took place every second day over a period of 50 days, and all variables were taken with an integrated water sampler (HydroBios, IWS) pre-programed to fill from 0 – 10 m depth and all samples consisted of this integrated samples from the upper 10 m. The samples were stored dark in cool boxes and brought back to the laboratory and processed right away. Sampling took place in the morning, and the samples were usually back in the laboratory around noon. Measured variables included inorganic nutrients, dissolved organic nutrients, extracellular enzyme activity: leucine aminopeptidase (LAP) and alkaline phosphatase activity (APA), and the phytoplankton and bacterial community composition.
    Keywords: alkaline phosphatase activity; Alkaline phosphatase activity; AQUACOSM; Bacteria; chlorophyll-a; Climate - Biogeochemistry Interactions in the Tropical Ocean; DATE/TIME; Day of experiment; Experimental treatment; KOSMOS_2017; KOSMOS_2017_Peru; KOSMOS Peru; leucine aminopeptidase; Leucine aminopeptidase activity; MESO; Mesocosm experiment; Mesocosm label; Network of Leading European AQUAtic MesoCOSM Facilities Connecting Mountains to Oceans from the Arctic to the Mediterranean; oxygen minimum zone; Phytoplankton; SFB754
    Type: Dataset
    Format: text/tab-separated-values, 5040 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-02
    Description: The table includes hydrography (salinity, temperature, density, oxygen concentrations) and nutrient (nitrate, nitrite, ammonium, phosphate) measurements from surface waters (upper 200 m) across a 14 °N transect of the Tropical North Atlantic.
    Keywords: Ammonium; BOTTLE; Bottle samples; Center for Marine Environmental Sciences; Chlorophyll a; Chlorophyll fluorescence, Dr. Haardt Instruments; Climate - Biogeochemistry Interactions in the Tropical Ocean; Conductivity; CTD; CTD/Rosette; CTD 10; CTD 12; CTD 13; CTD 16; CTD 17; CTD 22; CTD 24; CTD 27; CTD 28; CTD 3; CTD 33; CTD 34; CTD 36; CTD 38; CTD 4; CTD 43; CTD 44; CTD 47; CTD 48; CTD 49; CTD 50; CTD 52; CTD 53; CTD 55; CTD 56; CTD 61; CTD 62; CTD 9; CTD-RO; Date/Time of event; Density, mass density; DEPTH, water; Elevation of event; Event label; Julian day; Latitude of event; Longitude of event; M96; M96_1004-1; M96_1012-1; M96_1047-1; M96_1054-1; M96_622-1; M96_626-1; M96_649-1; M96_650-1; M96_660-1; M96_670-1; M96_692-1; M96_701-1; M96_755-1; M96_769-1; M96_793-1; M96_800-1; M96_839-1; M96_847-1; M96_863-1; M96_872-1; M96_913-1; M96_920-1; M96_945-1; M96_954-1; M96_962-1; M96_970-1; M96_985-1; M96_990-1; MARUM; Meteor (1986); Nitrate; Nitrite; Optional event label; Oxygen; Oxygen sensor, SBE 43; Phosphate; Salinity; SFB754; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 8508 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-02-02
    Keywords: Carbon fixation rate; Center for Marine Environmental Sciences; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 10; CTD 13; CTD 17; CTD 24; CTD 28; CTD 34; CTD 38; CTD 4; CTD 44; CTD 47; CTD 50; CTD 53; CTD 56; CTD 62; CTD-RO; Date/Time of event; DEPTH, water; Elevation of event; Event label; Gammaproteobacteria, cells; Heterocystous cyanobacteria, abundance expressed in number of nifH gene copies; Latitude of event; Longitude of event; M96; M96_1012-1; M96_1054-1; M96_626-1; M96_650-1; M96_670-1; M96_701-1; M96_769-1; M96_800-1; M96_847-1; M96_872-1; M96_920-1; M96_945-1; M96_970-1; M96_990-1; MARUM; Meteor (1986); Nitrogen fixation rate; SFB754; Station label; Trichodesmium, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-A, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-B, abundance expressed in number of nifH gene copies; Unicellular cyanobacteria-C, abundance expressed in number of nifH gene copies
    Type: Dataset
    Format: text/tab-separated-values, 924 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2017-06-15
    Description: Recent modeling results suggest that oceanic oxygen levels will decrease significantly over the next decades to centuries in response to climate change and altered ocean circulation. Hence, the future ocean may experience major shifts in nutrient cycling triggered by the expansion and intensification of tropical oxygen minimum zones (OMZs), which are connected to the most productive upwelling systems in the ocean. There are numerous feedbacks among oxygen concentrations, nutrient cycling and biological productivity; however, existing knowledge is insufficient to understand physical, chemical and biological interactions in order to adequately assess past and potential future changes. In the following, we summarize one decade of research performed in the framework of the Collaborative Research Center 754 (SFB754) focusing on climate–biogeochemistry interactions in tropical OMZs. We investigated the influence of low environmental oxygen conditions on biogeochemical cycles, organic matter formation and remineralization, greenhouse gas production and the ecology in OMZ regions of the eastern tropical South Pacific compared to the weaker OMZ of the eastern tropical North Atlantic. Based on our findings, a coupling of primary production and organic matter export via the nitrogen cycle is proposed, which may, however, be impacted by several additional factors, e.g., micronutrients, particles acting as microniches, vertical and horizontal transport of organic material and the role of zooplankton and viruses therein.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...