GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Formylmethanofuran dehydrogenase ; Tungsten enzymes ; Molybdopterin dinucleotides ; Methanogenesis ; Archaea ; Archaebacteria ; Methanobacterium thermoautotrophicum ; Methanobacterium wolfei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, 〈0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Tungsten enzymes ; Molybdenum enzymes ; Formylmethanofuran dehydrogenase ; Methanogenic Archaea ; Methanosarcina barkeri ; Methanobacterium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell extracts of Methanosarcina barkeri grown on methanol in media supplemented with molybdate exhibited a specific activity of formylmethanofuran dehydrogenase of approximately 1 U (1 μmol/min)/mg protein. When the growth medium was supplemented with tungstate rather than with molybdate, the specific activity was only 0.04 U/mg. Despite this reduction in specific activity growth on methanol was not inhibited. An inhibition of both growth and synthesis of active formylmethanofuran dehydrogenase was observed, however, when H2 and CO2 were the energy substrates. The results indicate that, in contrast to Methanobacterium wolfei and Methanobacterium thermoautotrophicum, M. barkeri possesses only a molybdenum containing formylmethanofuran dehydrogenase and not in addition a tungsten isoenzyme.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words: Formylmethanofuran dehydrogenase – Tungsten enzymes – Molybdopterin dinucleotides – Methanogenesis – Archaea – Archaebacteria –Methanobacterium thermoautotrophicum–Methanobacterium wolfei
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, 〈0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Current microbiology 41 (2000), S. 357-362 
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Internal pool sizes of glutamine and glutamate in Klebsiella pneumoniae grown under nitrogen limitation or nitrogen sufficiency were measured to study the signal transduction of external nitrogen limitation. K. pneumoniae cells were grown in an anaerobic, ammonium-limited chemostat culture. At a growth rate of 0.217 h−1, the steady state ammonium concentration in the culture was 55 μm, correlating with repression of the nitrogen fixation (nif) genes. At growth rates below 0.138 h−1, the ammonium concentration in the culture dropped below 0.5 μm and the nif genes became derepressed. During the transition from nitrogen sufficiency to nitrogen limitation, the internal glutamine pool in K. pneumoniae decreased by a factor of approximately 6. The glutamate pool, however, remained stable. Similarly, in anaerobic batch cultures with different limiting nitrogen sources, the glutamine pool generally decreased by a factor of 7 to 9 when nif gene derepression was achieved. All the limiting nitrogen sources used resulted in decreased growth rates compared with growth under nitrogen excess, suggesting an inverse relationship between glutamine pool size and doubling time. These studies indicate that K. pneumoniae perceives external nitrogen limitation as internal glutamine limitation.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...