GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Hochschulschrift ; Coccolithophoridae ; Verkalkung ; Photosynthese
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (112 Seiten = 9 MB) , Illustrationen, Graphen
    Edition: Online-Ausgabe 2021
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (66 Seiten = 3,6 MB) , Illustrationen, Graphen
    Edition: 2022
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Forschungsbericht ; Meerwasser ; Kohlendioxid ; Versauerung ; Biogeochemie
    Type of Medium: Book
    Pages: 23 Seiten , Illustrationen, Diagramme
    Language: English
    Note: Förderkennzeichen BMBF 03F0608 A-O. - Verbund-Nr. 01073496
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Keywords: Forschungsbericht ; Meerwasser ; Kohlendioxid ; Versauerung ; Biogeochemie
    Type of Medium: Book
    Pages: 23 S. , Ill., graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 03F0608 A-O. - Verbund-Nr. 01073496
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (34 Seiten = 1 MB) , Illustrationen, Graphen
    Edition: Online-Ausgabe 2023
    Language: English
    Note: Zusammenfassung in deutscher und englischer Sprache
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Hochschulschrift
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (57 Seiten = 2 MB) , Illustrationen, Graphen, Karte
    Edition: Online-Ausgabe 2023
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: As one of Earth's most productive marine ecosystems, the Peruvian upwelling system transports large amounts of biogenic matter from the surface to the deep ocean. Whilst particle sinking velocity is a key factor controlling the biological pump, thereby affecting carbon sequestration and O2-depletion, it has not yet been measured in this system. During a 50 d mesocosm experiment in the surface waters off the coast of Peru, we assessed particle sinking velocities and their biogeochemical and physical drivers. We further characterized the general properties of exported particles under different phytoplankton communities and nutritional states. Average sinking velocities varied between size classes and ranged from 12.8 ± 0.7 m d−1 (particles 40–100 µm) to 19.4 ± 0.7 m d−1 (particles 100–250 µm) and 34.2 ± 1.5 m d−1 (particles 250–1000 µm) (± 95 % CI). Despite a distinct plankton succession from diatoms to dinoflagellates with concomitant 5-fold drop in opal ballasting, substantial changes in sinking velocity were not observed. This illustrates the complexity of counteracting factors driving the settling behaviour of marine particles. In contrast, we found higher sinking velocities with increasing particle size and roundness and decreasing porosity. Size had by far the strongest influence among these physical particle properties, despite a high amount of unexplained variability. Our study provides a detailed analysis of the drivers of particle sinking velocity in the Peruvian upwelling system, which allows modellers to optimize local particle flux parameterization. This will help to better project oxygen concentrations and carbon sequestration in a region that is subject to substantial climate-driven changes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-02
    Description: Gelatinous zooplankton are increasingly recognized to play a key role in the ocean's biological carbon pump. Appendicularians, a class of pelagic tunicates, are among the most abundant gelatinous plankton in the ocean, but it is an open question how their contribution to carbon export might change in the future. Here, we conducted an experiment with large volume in situ mesocosms (~55–60 m3 and 21 m depth) to investigate how ocean acidification (OA) extreme events affect food web structure and carbon export in a natural plankton community, particularly focusing on the keystone species Oikopleura dioica, a globally abundant appendicularian. We found a profound influence of O. dioica on vertical carbon fluxes, particularly during a short but intense bloom period in the high CO2 treatment, during which carbon export was 42%–64% higher than under ambient conditions. This elevated flux was mostly driven by an almost twofold increase in O. dioica biomass under high CO2. This rapid population increase was linked to enhanced fecundity (+20%) that likely resulted from physiological benefits of low pH conditions. The resulting competitive advantage of O. dioica resulted in enhanced grazing on phytoplankton and transfer of this consumed biomass into sinking particles. Using a simple carbon flux model for O. dioica, we estimate that high CO2 doubled the carbon flux of discarded mucous houses and fecal pellets, accounting for up to 39% of total carbon export from the ecosystem during the bloom. Considering the wide geographic distribution of O. dioica, our findings suggest that appendicularians may become an increasingly important vector of carbon export with ongoing OA.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Sett, Scarlett; Febin, Sarah; Rzepka, Paul; Schulz, Kai Georg (2012): An approach for particle sinking velocity measurements in the 3–400 µm size range and considerations on the effect of temperature on sinking rates. Marine Biology, 159(8), 1853-1864, https://doi.org/10.1007/s00227-012-1945-2
    Publication Date: 2024-03-06
    Description: The flux of organic particles below the mixed layer is one major pathway of carbon from the surface into the deep ocean. The magnitude of this export flux depends on two major processes--remineralization rates and sinking velocities. Here, we present an efficient method to measure sinking velocities of particles in the size range from approximately 3-400 µm by means of video microscopy (FlowCAM®). The method allows rapid measurement and automated analysis of mixed samples and was tested with polystyrene beads, different phytoplankton species, and sediment trap material. Sinking velocities of polystyrene beads were close to theoretical values calculated from Stokes' Law. Sinking velocities of the investigated phytoplankton species were in reasonable agreement with published literature values and sinking velocities of material collected in sediment trap increased with particle size. Temperature had a strong effect on sinking velocities due to its influence on seawater viscosity and density. An increase in 9 °C led to a measured increase in sinking velocities of 40 %. According to this temperature effect, an average temperature increase in 2 °C as projected for the sea surface by the end of this century could increase sinking velocities by about 6 % which might have feedbacks on carbon export into the deep ocean.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel | Supplement to: Bach, Lennart Thomas; Riebesell, Ulf; Gutowska, Magdalena A; Federwisch, Luisa; Schulz, Kai Georg (2015): A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Progress in Oceanography, 135, 125-138, https://doi.org/10.1016/j.pocean.2015.04.012
    Publication Date: 2024-03-06
    Description: Coccolithophores are a group of unicellular phytoplankton species whose ability to calcify has a profound influence on biogeochemical element cycling. Calcification rates are controlled by a large variety of biotic and abiotic factors. Among these factors, carbonate chemistry has gained considerable attention during the last years as coccolithophores have been identified to be particularly sensitive to ocean acidification. Despite intense research in this area, a general concept harmonizing the numerous and sometimes (seemingly) contradictory responses of coccolithophores to changing carbonate chemistry is still lacking to date. Here, we present the "substrate-inhibitor concept" which describes the dependence of calcification rates on carbonate chemistry speciation. It is based on observations that calcification rate scales positively with bicarbonate (HCO3-), the primary substrate for calcification, and carbon dioxide (CO2), which can limit cell growth, whereas it is inhibited by protons (H+). This concept was implemented in a model equation, tested against experimental data, and then applied to understand and reconcile the diverging responses of coccolithophorid calcification rates to ocean acidification obtained in culture experiments. Furthermore, we (i) discuss how other important calcification-influencing factors (e.g. temperature and light) could be implemented in our concept and (ii) embed it in Hutchinson's niche theory, thereby providing a framework for how carbonate chemistry-induced changes in calcification rates could be linked with changing coccolithophore abundance in the oceans. Our results suggest that the projected increase of H+ in the near future (next couple of thousand years), paralleled by only a minor increase of inorganic carbon substrate, could impede calcification rates if coccolithophores are unable to fully adapt. However, if calcium carbonate (CaCO3) sediment dissolution and terrestrial weathering begin to increase the oceans' HCO3- and decrease its H+ concentrations in the far future (10 -100 kyears), coccolithophores could find themselves in carbonate chemistry conditions which may be more favorable for calcification than they were before the Anthropocene.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...