GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Food—Microbiology. ; Renewable energy sources.
    Beschreibung / Inhaltsverzeichnis: 1 Utilization Of Food Waste For Biofuel Production -- 2 Bioenergy And Food Processing Waste -- 3 From fruit and vegetable waste to biofuel production-PART-I -- 4 From fruit and vegetable waste to biofuel production-PART-II -- 5 Recent advances in biogas production from food waste -- 6 Biogas from kitchen waste -- 7 Food processing by-products and waste utilization for bioethanol production -- 8 Utilization of fruit-vegetable waste and other feedstocks for bioethanol fermentation: New insight -- 9 Production of Bioethanol from fruit wastes: Recent Advances -- 10 Trends in biodiesel production from algae and animal fat wastes: challenges and prospects.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(XI, 278 p. 1 illus.)
    Ausgabe: 1st ed. 2022.
    ISBN: 9789811908132
    Serie: Clean Energy Production Technologies
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Microbiology—Technique. ; Microbial ecology. ; Industrial microbiology. ; Microbiology
    Beschreibung / Inhaltsverzeichnis: Chapter. 1. Recent advancements in municipal wastewater as source of biofuels from algae -- Chapter. 2. Recent trends for production of biofuels using algal biomass -- Chapter. 3. Microbial mats and its significance in biofuel production -- Chapter. 4. Algal biohydrogen production: opportunities and challenges -- Chapter. 5. Using Algae as a Renewable Source in the Production of Biodiesel -- Chapter. 6. Various applications to macroalgal and microalgal biomasses for biohydrogen and biomethane production -- Chapter. 7. Algal biofuels: clean energy to combat the climate change -- Chapter. 8. Thermo-kinetic study of Arthrospira platensis microalgae pyrolysis: Evaluation of kinetic and thermodynamics parameters -- Chapter. 9. Growth of Chlorella minutissima microalgae from fruit waste extract for biodiesel production -- Chapter. 10. Microalgae: A way towards sustainable development of a society.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(X, 277 p. 1 illus.)
    Ausgabe: 1st ed. 2023.
    ISBN: 9789811968105
    Serie: Clean Energy Production Technologies
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Biology—Technique. ; Microbiology. ; Biotechnology. ; Biology
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Biotechnological approaches to enhance algae biofuel production -- Chapter 2. The use of omics technologies, random mutagenesis, and genetic transformation techniques to improve algae for biodiesel industry -- Chapter 3. Algal butanol production: recent developments -- Chapter 4. Algal synthesis of gold nanoparticles: applications in bioenergy -- Chapter 5. Challenges assessment in economic Algal biofuel Production -- Chapter 6. Influence of culture conditions on the microalgae biomass and lipid accumulation -- Chapter 7. Advanced genetic approaches towards custom design microalgae for fourth-generation biofuels -- Chapter 8. Algal biofuel production from municipal waste waters -- Chapter 9. Positive influence and future perspective of marine alga on biofuel production -- Chapter 10. Algae bacterial mixed culture for waste to wealth conversation: a case study.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(XI, 295 p. 1 illus.)
    Ausgabe: 1st ed. 2023.
    ISBN: 9789811968068
    Serie: Clean Energy Production Technologies
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Singapore : Springer Nature Singapore | Singapore : Imprint: Springer
    Schlagwort(e): Agriculture. ; Refuse and refuse disposal. ; Bioenergetics.
    Beschreibung / Inhaltsverzeichnis: Chapter 1. Pulses waste to biofuels -- Chapter 2. Utilization of Wheat and Maize waste as Biofuel source -- Chapter 3. Agricultural residues and manures into bioenergy -- Chapter 4. Bioenergy from cellulose of Woody Biomass -- Chapter 5. Potential Technologies for Advanced Generation Biofuels from Waste Biomass -- Chapter 6. Biological pretreatment strategies for second generation lignocellulosic biomass to enhance ethanol production -- Chapter 7. Agricultural lignocellulosic waste to Biofuels -- Chapter 8. Mixed lignocellulosic feedstocks: An effective approach for enhanced biofuel production -- Chapter 9. Bioenergy: Challenges ahead and Future -- Chapter 10. Production of bioethanol from mixed lignocellulosic biomass:Future prospects and challenges.
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource(XIII, 326 p. 1 illus.)
    Ausgabe: 1st ed. 2023.
    ISBN: 9789811962301
    Serie: Clean Energy Production Technologies
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Microbial ecology. ; Industrial microbiology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (280 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811968105
    Serie: Clean Energy Production Technologies Series
    DDC: 662.88
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (218 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030147266
    Serie: Fungal Biology Series
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Fungal Cellulases: New Avenues in Biofuel Production -- 1.1 Introduction -- 1.2 Classification, Production, and Mode of Action -- 1.3 Cellulase as Biofuels -- 1.3.1 Bioethanol -- 1.3.1.1 Stages/Processing Route -- Pretreatment -- Hydrolysis -- Fermentation -- 1.3.1.2 Factors Affecting Bioethanol Manufacturing -- Temperature -- Inoculum -- Agitation Rate -- Fermentation Time -- 1.3.1.3 Bioethanol-Based Economy -- 1.3.1.4 Recent Status of Bioethanol Production -- 1.4 Advantages of Fungal Cellulase -- 1.5 Industrial Application -- 1.5.1 Function of Cellulase in Several Industries -- 1.5.1.1 Biofuels -- 1.5.1.2 Textile Industry -- 1.5.1.3 Pulp and Paper Industry -- 1.5.1.4 Agriculture Industries -- 1.5.1.5 Animal Feed Industries -- 1.5.1.6 Other Applications -- 1.6 Current Status -- 1.7 Conclusion -- References -- Chapter 2: An Insight into Fungal Cellulases and Their Industrial Applications -- 2.1 Introduction -- 2.2 Fungal Cellulases -- 2.2.1 Cellulases from Aspergillus -- 2.2.2 Cellulases from Trichoderma -- 2.2.3 Cellulases from Penicillium -- 2.2.4 Cellulases from Other Genera -- 2.3 Conclusion -- References -- Chapter 3: Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation -- 3.1 Introduction -- 3.2 Cellulase Production by Submerged Fermentation -- 3.3 Cellulase Production by Solid-State Fermentation -- 3.4 Summary -- 3.5 Conclusion -- References -- Chapter 4: Microorganisms for Cellulase Production: Availability, Diversity, and Efficiency -- 4.1 Introduction -- 4.2 Identification of New Strains with Potential for Cellulose Production -- 4.3 Microorganisms as Tools for Efficient Cellulase Production -- 4.3.1 Fermentative Process Parameters -- 4.3.2 Optimization Process for Enhanced Cellulose Production. , 4.4 Conclusion -- References -- Chapter 5: Role of Solid-State Fermentation to Improve Cost Economy of Cellulase Production -- 5.1 Introduction -- 5.2 SSF Mode of Cellulase Production -- 5.3 SmF Versus SSF -- 5.4 Microbes and Other Conditions in SSF -- 5.5 Role of Inducer/Accessory Proteins in Cellulase Production -- 5.6 Cellulase Optimization Strategies -- 5.7 Microbial Consortia Applications -- 5.8 Process Economy of Production and Extraction in SSF Mode -- 5.9 Pilot-Scale Production Strategies -- 5.10 Conclusion -- References -- Chapter 6: Cellulose as a Potential Feedstock for Cellulose Enzyme Production -- 6.1 Introduction -- 6.2 Enzymatic Mechanisms of Cellulases -- 6.2.1 Endoglucanase -- 6.2.2 Exoglucanase -- 6.2.3 β-Glucosidase -- 6.3 Cellulose Source Materials and Their Derivatives -- 6.4 Sources of Cellulases -- 6.4.1 Cellulolytic Organisms -- 6.4.1.1 Fungi -- 6.4.1.2 Bacteria -- 6.5 Application of Cellulases in Various Industries -- 6.5.1 Pulp and Paper Industry -- 6.5.2 Textile Industry -- 6.5.3 Bioethanol Industry -- 6.5.4 Wine and Brewery Industry -- 6.5.5 Food Processing Industry -- 6.5.6 Animal Feed Industry -- 6.5.7 Agricultural Industries -- 6.5.8 Olive Oil Extraction -- 6.5.9 Carotenoid Extraction -- 6.5.10 Detergent Industry -- 6.5.11 Waste Management -- 6.6 Immobilization of Cellulase -- 6.7 Future Perspectives -- 6.8 Conclusion -- References -- Chapter 7: Cellulose as Potential Feedstock for Cellulase Enzyme Production: Versatility and Properties of Various Cellulosic Biomass - Part II -- 7.1 Introduction -- 7.2 Sources of Cellulose -- 7.2.1 Natural -- 7.2.2 Synthetic -- 7.3 Cellulase and Its Types -- 7.4 Effective Ways of Cellulase Production -- 7.4.1 Production of Cellulase Through Fermentation -- 7.5 Various Applications of Cellulases -- 7.5.1 Paper Industry -- 7.5.2 Textile Industry -- 7.5.3 Biofuel and Brewery Industry. , 7.5.4 Agriculture and Detergent Industry -- 7.5.5 Food Industry -- 7.6 Fine-Tuning the Digestion of Cellulose with a Discovery of Novel Enzymes -- References -- Chapter 8: Immobilization Methods of Enzymes: Part I -- 8.1 Introduction -- 8.2 Considerations of Immobilization of Enzymes -- 8.3 Methods for Immobilization of Enzymes -- 8.3.1 Physical Methods -- 8.3.1.1 Adsorption -- 8.3.1.2 Gel Entrapment -- 8.3.2 Chemical Methods -- 8.3.2.1 Covalent Bonding -- 8.3.2.2 Cross-Linking -- 8.4 Conclusion -- References -- Chapter 9: Strategies to Reuse Cellulase: Immobilization of Enzymes (Part II) -- 9.1 Introduction -- 9.2 Historical Background -- 9.3 Modes of Immobilization -- 9.4 Polymers as Supports -- 9.4.1 Alginate -- 9.4.2 Chitin and Chitosan -- 9.4.3 Carrageenan -- 9.4.4 Starch -- 9.4.5 Pectin -- 9.4.6 Activated Carbon -- 9.5 Immobilization Strategies -- 9.6 Conclusion -- References -- Chapter 10: Current Advancements in Recombinant Technology for Industrial Cellulases: Part-I -- 10.1 Introduction -- 10.2 Cellulase System and Control of Cellulose Gene Expression -- 10.3 Characteristics of Host Strains -- 10.4 Individual Strains (Bacteria, Yeast, and Molds Involved in Cellulose Production) -- 10.4.1 Construction of Recombinant Production Strains -- 10.4.2 Transformation and Identification of Transformed Strains -- 10.5 Fermentative Production of Cellulase Enzyme -- 10.5.1 Cellulase Production by Bacteria -- 10.5.2 Cellulase Production by Fungus -- 10.5.3 Cellulase Production by Yeast -- 10.6 Application of Cellulases -- 10.6.1 Paper and Pulp Industry -- 10.6.2 Textile Industry -- 10.6.3 Bioethanol Industry -- 10.6.4 Wine and Brewery Industry -- 10.6.5 Food Processing Industry -- 10.6.6 Animal Feed Industry -- 10.6.7 Agriculture-Based Industries -- 10.6.8 Extraction of Olive Oil -- 10.6.9 Extraction of Carotenoid Pigments -- 10.6.10 Detergent Industry. , 10.6.11 Waste Management -- 10.7 Future Prospects -- References -- Chapter 11: Current Advancements in Recombinant Technology for Industrial Production of Cellulases: Part-II -- 11.1 Introduction -- 11.1.1 Cellulase -- 11.2 Types of Cellulase -- 11.2.1 Endocellulases -- 11.2.2 Exocellulases -- 11.2.3 Cellobiases -- 11.2.4 Oxidative Cellulases -- 11.2.5 Cellulose Phosphorylases -- 11.3 Sources of Cellulase -- 11.3.1 Fungi -- 11.3.2 Bacteria -- 11.4 Synthesis of Cellulase -- 11.5 Cellulase Production Technologies -- 11.5.1 Fermentation for Cellulase Production -- 11.5.2 Cellulase Production Through Improved Cellulase-Producing Organisms -- 11.5.3 Batch Cellulase Production Process -- 11.5.4 Fed-Batch Cellulase Production Technology -- 11.5.5 Continuous Cellulase Production -- 11.5.6 Downstream Process for Production of Cellulase -- 11.6 Uses of Cellulase in Industries -- 11.7 Need of Recombinant Technology -- 11.8 Application of Recombinant Technology in Cellulase Industries -- 11.9 Future Use of Recombinant Technology in Cellulase Industries -- 11.10 Conclusion -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Singapore :Springer,
    Schlagwort(e): Biomass energy. ; Waste products as fuel. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (282 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811908132
    Serie: Clean Energy Production Technologies Series
    DDC: 662.88
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Utilization of Food Waste for Biofuel Production -- 1.1 Introduction -- 1.2 Background -- 1.3 Characteristics of Food Waste -- 1.4 Production of Biofuels -- 1.4.1 Biodiesel Production from Food Waste -- 1.4.2 Bioethanol Production from Food Waste -- 1.4.2.1 Pretreatment of Food Waste -- 1.4.2.2 Process Strategies -- 1.4.3 Hydrogen and Methane Production from Food Waste -- 1.4.3.1 Production of Hydrogen -- 1.4.3.2 Production of Methane -- 1.5 Biofuel Economics from Food Waste -- 1.6 Food Waste Applications from Different Industries -- 1.7 Advantages of Biofuels from Food Wastes -- 1.8 Disadvantages of Biofuels from Food Wastes -- 1.9 Challenges -- 1.9.1 Unorganized Industry -- 1.9.2 Separation of Food Waste -- 1.9.3 Nonrenewable Resource -- 1.9.4 Nonstandard Resource -- 1.10 Future Prospects -- 1.11 Conclusion -- References -- Chapter 2: Bioenergy and Food Processing Waste -- 2.1 Introduction -- 2.2 Present Scenario of Food Processing Waste in India and the World -- 2.2.1 Biofuels from Food Processing Wastes -- 2.2.1.1 Liquid Biofuels -- Bioethanol -- Biodiesel -- Bio-oil -- Biobutanol -- 2.2.1.2 Gaseous Biofuels -- Biogas or Methane -- Hydrogen -- Hythane -- 2.3 Bioenergy Sources from Different Food Wastes -- 2.3.1 Cereal and Millet Wastes -- 2.3.2 Fruit and Vegetable Processing Wastes -- 2.3.3 Dairy Processing Wastes -- 2.4 Factors Affecting the Production of Biofuels -- References -- Chapter 3: From Fruit and Vegetable Waste to Biofuel Production: Part I -- 3.1 Introduction -- 3.2 Food Waste (FW) Definition, Generation, and Impact -- 3.2.1 FW Characteristics -- 3.2.2 Current FW Management Avenues -- 3.3 Biofuels as Sustainable Energy Sources -- 3.4 Biofuel Production from Fruit and Vegetable Wastes (FVW) -- 3.4.1 Bioethanol. , 3.4.1.1 From Fruit Waste by Marine Bacterial Strain Citrobacter sp. E4 -- 3.4.1.2 From Citrus Peels and Wastes -- 3.4.1.3 From Pineapple Wastes -- 3.4.1.4 From Banana and Mango Wastes -- 3.4.1.5 From Potato Peels -- 3.4.1.6 From Pistachio Wastes -- 3.4.1.7 Factors Affecting Bioethanol Production -- 3.5 Conclusion -- References -- Chapter 4: From Fruit and Vegetable Waste to Biofuel Production: Part II -- 4.1 Introduction -- 4.2 Biohydrogen -- 4.2.1 Factors Influencing Biohydrogen Production -- 4.3 Biodiesel -- 4.3.1 Factors Influencing Biodiesel Production -- 4.4 Biogas -- 4.5 Conclusion -- References -- Chapter 5: Recent Advances in Biogas Production from Food Waste -- 5.1 Introduction -- 5.2 Food Waste -- 5.2.1 Composition of Food Wastes -- 5.2.2 Impacts of Food Waste Accumulation and Disposal -- 5.2.2.1 Environmental Impacts -- 5.2.3 Waste Management Strategies for Food Wastes -- 5.3 Biogas -- 5.3.1 Driving Forces for Biogas Production -- 5.3.2 Biogas Production from Food Waste: The Process -- 5.3.2.1 Pretreatment of Food Waste -- Pretreatment Techniques -- 5.3.2.2 Anaerobic Digestion -- 5.3.2.3 Factors Affecting Biogas Production -- 5.3.2.4 Anaerobic Digestion Systems -- Mono-Digestion of Food Wastes -- Anaerobic Co-Digestion and Enrichment of the Biogas Production -- 5.3.2.5 Advantages of Anaerobic Digestion -- 5.4 Reactors for Biogas Production -- 5.4.1 Conventional Biogas Reactors -- 5.4.2 Innovative Biogas Reactor Technologies -- 5.5 16S rRNA Gene Sequencing of Microbial Consortia for Anaerobic Digestion -- 5.6 Biogas Industry: Current Status -- 5.7 Food Waste Digestion: The Potential -- 5.8 Biogas Production-Economic Perspectives -- 5.8.1 Biogas Economics for Food Wastes -- 5.8.2 Anaerobic Digestion of Food Wastes and the Circular Economy -- 5.9 Issues Related to Biogas Production -- 5.10 Future Prospects and Conclusion -- References. , Chapter 6: Biogas from Kitchen Waste -- 6.1 Introduction -- 6.2 Biofuel Classifications -- 6.2.1 Kitchen Waste Composition -- 6.2.1.1 Biochemical Methane Potential (BMP) -- Microbes Required for Hydrolysis -- Methanogenesis -- 6.2.1.2 Pretreatment Methods for Food Waste -- 6.2.2 Biogas Digester -- 6.2.3 Barriers in the Biogas Production (Mittal et al. 2018) -- 6.3 Conclusion -- References -- Chapter 7: Food Processing By-Products and Waste Utilisation for Bioethanol Production -- 7.1 Introduction -- 7.2 Applications of Bioethanol -- 7.3 Bioethanol Production -- 7.3.1 Sugar-Based Feedstock -- 7.3.2 Starch-Based Feedstock -- 7.3.3 Lignocellulosic Feedstock -- 7.4 Significance of Utilising Food Processing By-Products and Waste for the Bioethanol Production -- 7.5 Bioethanol from Food Processing By-Products and Waste -- 7.5.1 Bioethanol from Vegetable and Fruit -- 7.5.2 Bioethanol from Banana Wastes -- 7.5.3 Bioethanol from Citrus Fruit Wastes -- 7.5.4 Bioethanol from Date Fruit Waste -- 7.5.5 Bioethanol from Potato Processing Waste -- 7.5.6 Bioethanol from Coffee Pulp and Husks -- 7.5.7 Bioethanol from Grain Waste -- 7.5.7.1 Energy Crops -- 7.5.7.2 Rice Husks -- 7.5.8 Dairy -- 7.5.8.1 Cheese Whey -- 7.6 Conclusion -- References -- Chapter 8: Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation -- 8.1 Introduction -- 8.1.1 Fruit and Vegetable Wastes (FVW) as a Raw Feedstock for Bioethanol Production -- 8.1.2 Role of Microorganisms -- 8.1.3 Pretreatment and Detoxification of FVW -- 8.1.4 Bioethanol Production -- 8.1.5 Ethanol Recovery by Distillation -- 8.2 Factors Affecting Fermentation -- 8.3 Ethanol as Biofuel -- 8.4 Future of Bioethanol in India -- 8.5 Conclusion -- References -- Chapter 9: Production of Bioethanol from Fruit Wastes: Recent Advances -- 9.1 Introduction -- 9.2 Advantages of Bioethanol. , 9.3 Present Scenario -- 9.4 Ethanol as a Biofuel for Renewable Energy -- 9.5 Bioethanol Economy -- 9.6 Types of Fruit Wastes -- 9.7 Fruit Wastes (Substrates) Suitable for Production of Ethanol -- 9.8 Pretreatments of Fruit Wastes for Ethanol Production -- 9.9 Ethanol Production Using Different Fruit Wastes -- 9.9.1 Kinnow -- 9.9.2 Kinnow and Banana Peels -- 9.9.3 Mango/Banana Waste -- 9.9.4 Banana Waste -- 9.9.5 Mango Waste -- 9.9.6 Citrus Wastes -- 9.9.7 Beet Waste -- 9.9.8 Apple Pomace -- 9.9.9 Pineapple Wastes -- 9.9.10 Grape Pomace -- 9.9.11 Oil Palm -- 9.9.12 Fruit Peel -- 9.9.13 Pawpaw -- 9.9.14 Papaya -- 9.9.15 Date Palm -- 9.9.16 Mixed Fruit Wastes -- 9.9.17 Rambutan -- 9.9.18 Orange Peels -- 9.9.19 Cashew Apple Juice -- 9.9.20 Jamun and Mango -- 9.10 Conclusions -- References -- Chapter 10: Trends in Biodiesel Production from Algae and Animal Fat Wastes: Challenges and Prospects -- 10.1 Introduction -- 10.2 Biodiesel Production by Using Algae -- 10.3 Algae Production Processes and Conversion Processes -- 10.4 Algal Pretreatment for Biodiesel Production -- 10.5 Utilizing Microalgae to Produce Biodiesel -- 10.6 Process Used to Obtain Biodiesel from Algae -- 10.7 Biodiesel Production by Using Animal Fat Waste -- 10.8 Biodiesel Production Via Transesterification by Using Animal Fats -- 10.9 Characteristics of Biodiesel Which Is Obtained from Animals Feedstocks -- 10.10 Major Challenges and Future Prospects in Biodiesel Production from Vegetable Oil and Animal Fat Waste -- 10.11 Conclusions -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Singapore :Springer Singapore Pte. Limited,
    Schlagwort(e): Biotechnology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (238 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811570704
    Serie: Clean Energy Production Technologies Series
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Impact of Fermentation Types on Enzymes Used for Biofuels Production -- 1.1 Introduction -- 1.2 Characteristics of Biofuels -- 1.3 Classification of Biofuels -- 1.4 History of Biofuels -- 1.5 Biofuel Production Process -- 1.5.1 Pre-Treatment -- 1.5.2 Hydrolysis -- 1.5.3 Fermentation -- 1.6 Enzymes in Biofuel Production -- 1.7 Kinetics of Biofuel Synthesis -- 1.8 Factors Affecting the Enzyme Expression Responsible for Biofuel Production -- 1.9 Types of Fermentation for Enzymatic Biofuel Production -- 1.10 Biobutanol Production -- 1.11 Factors Affecting the Fermentation Process -- 1.12 Impact of Fermentation on Enzymes During Biofuels Production -- 1.13 Downstream Processing of Biofuels -- 1.13.1 Gas Stripping and Vacuum Process -- 1.13.2 Biphasic Solvent Extraction -- 1.13.3 Adsorption Based Recovery -- 1.13.4 Recovery of Biofuels Based on Membrane Separation -- 1.13.5 Perstraction -- 1.14 Conclusion -- 1.15 Future Prospects -- References -- Chapter 2: Downstream Processing -- Applications and Recent Updates -- 2.1 Introduction -- 2.2 Stages of Downstream Process -- 2.3 Downstream Process Unit Operations (Fig. 2.2) -- 2.3.1 Separation of Cells and Extracellular Fluid -- 2.3.1.1 Filtration -- 2.3.1.2 Centrifugation -- 2.3.1.3 Gravity Sedimentation -- 2.3.1.4 Flocculation -- 2.3.1.5 Flotation -- 2.3.2 Cell Rupture and Separation of Cell Extract -- 2.3.2.1 Mechanical Rupture -- 2.3.2.2 Non-Mechanical Cell Rupture -- Chemical Extraction -- Biological Rupture -- 2.3.3 Concentration and Purification of Soluble Products -- 2.3.3.1 Precipitation -- 2.3.3.2 Membrane Separation -- 2.3.3.3 Nanofiltration or Reverse Osmosis -- 2.3.3.4 Liquid Extraction -- 2.3.3.5 Chromatography -- Adsorption Chromatography -- Ion Exchange Chromatography -- Affinity Chromatography. , Gel Chromatography -- Electrophoresis -- 2.3.4 Finishing Operations -- 2.3.4.1 Crystallization -- 2.3.4.2 Drying -- 2.4 Applications and Industrial Products -- 2.4.1 Bio-fuels -- 2.4.1.1 Biobutanol -- 2.4.2 Bt Biopesticides -- 2.4.3 Natural Colourant: Carminic Acid -- 2.4.4 Bioethanol -- 2.4.5 Acetic Acid -- 2.4.6 Lactic Acid -- 2.4.7 Citric Acid -- 2.4.7.1 Methods of Fermentation -- 2.4.8 Pencillin -- 2.4.9 Nisin -- 2.4.10 Vitamin B12 -- 2.4.11 Stevia: A Natural Sweetener -- References -- Chapter 3: Types of Bioreactors for Biofuel Generation -- 3.1 Introduction -- 3.2 Microbial Cultivation -- 3.3 Challenges in Biofuel Generation -- 3.4 Submerged Fermentation -- 3.4.1 Batch Type of Fermenter -- 3.4.2 Fed-Batch Fermentation -- 3.4.3 Continuous Type of Bioreactor -- 3.4.3.1 Separate Hydrolysis and Fermentation -- 3.4.3.2 Simultaneous Saccharification and Fermentation -- 3.4.3.3 Simultaneous Saccharification and Co-Fermentation (SmScF) -- 3.5 Direct Microbial Conversion -- 3.6 Concept of Solid State Fermentation-Based Biorefinery -- 3.7 Types of Solid State Fermentation Bioreactors -- 3.7.1 Tray Type Bioreactors (TTB) -- 3.7.2 Packed Bed Type Bioreactor (PBTB) -- 3.7.3 Air Pressure Pulsation Type Bioreactors (APPTB) -- 3.7.4 Intermittent or Continuously Mixed SSF Bioreactor -- 3.8 Solid-State Fermentation versus Submerged Fermentation -- 3.9 Conclusion -- References -- Chapter 4: Bioprocess for Algal Biofuels Production -- 4.1 Introduction -- 4.2 Generation of Biofuels -- 4.3 Different Types of Algal Biofuels -- 4.3.1 Biodiesel -- 4.3.2 Bioethanol -- 4.3.3 Biogas -- 4.4 Characteristics of Algae as Ideal Resource for Biofuel Production -- 4.5 Upstream Processing: Cultivation Techniques of Microalgae for Biofuels Production -- 4.6 Downstream Processing: Harvesting of Algal Biomass -- 4.7 Conclusion -- References. , Chapter 5: Effect of Bioprocess Parameters on Biofuel Production -- 5.1 Introduction -- 5.2 Biofuels Producing Microorganisms -- 5.3 Measuring of Bioprocess Parameters -- 5.4 Bioprocess Parameters Affecting Biofuels Production -- 5.4.1 Physical Parameters -- 5.4.1.1 Role of Temperature in Biofuel Production -- 5.4.1.2 Role of pH in Biofuel Production -- 5.4.1.3 Agitation Rate -- 5.4.1.4 Fermentation Time -- 5.4.2 Nutritional Parameters Affecting Biofuel Production -- 5.4.2.1 Role of Substrate and Effect of Initial Substrate Concentration -- 5.4.2.2 Effect of Different Inoculum Size on Biofuel Production -- 5.4.2.3 Effect of Various Sugars and Their Concentrations -- 5.4.2.4 Effect of Acid Concentration on Biofuel Production -- 5.4.2.5 The Effect of Solvent/Surfactants/Detergents on Biofuel Production -- 5.4.2.6 Effect of Metal Ions on Biofuel Production -- 5.5 Conclusion -- References -- Chapter 6: Role of Substrate to Improve Biomass to Biofuel Production Technologies -- 6.1 Introduction -- 6.2 Composition of Biomass and Its Role in Biofuels Production -- 6.3 Role of Different Substrates in Biofuels Technology -- 6.4 Approaches That Enhance Biomass to Biofuels Production -- 6.4.1 Physical Pretreatment -- 6.4.2 Chemical Pretreatment -- 6.4.3 SPROL Process -- 6.4.4 Ethanol Organosolv Pretreatment -- 6.4.5 Biological Pretreatment -- 6.4.6 Combined Pretreatment Approaches -- 6.4.6.1 Steam Explosion Method -- 6.4.6.2 Supercritical Fluid Extrusion -- 6.4.6.3 Critical Carbon Dioxide Extraction Method -- 6.4.6.4 Comparison Between Efficiencies of Combined Approaches -- 6.5 Biofuels Produced from Biomass -- 6.6 Conclusion -- References -- Chapter 7: Techno-Economic Analysis of Second-Generation Biofuel Technologies -- 7.1 Introduction -- 7.2 Techno-Economic Assessment of Biofuels. , 7.3 Different Second-Generation Biofuel Technologies Based on the Products Formed -- 7.4 Techno-Economic Assessment of Different Second-Generation Biofuel Technologies -- 7.4.1 Gasification -- 7.4.2 Different Types of Gasification -- 7.4.2.1 Fischer-Tropsch Synthesis -- 7.4.2.2 Mixed Alcohol Synthesis -- 7.4.2.3 Methanol to Gasoline -- 7.4.2.4 Syngas to Distillates (S2D) -- 7.4.2.5 Syngas Fermentation -- 7.4.3 Pyrolysis -- 7.5 Techno-Economic Assessment of Different Pre-treatment Technologies for Bioethanol Production -- 7.5.1 AFEX Pre-treatment Process -- 7.5.2 Dilute Acid Pre-treatment -- 7.5.3 Lime Pre-treatment -- 7.5.4 Hot Water Pre-treatment -- 7.5.5 Soaking in Aqueous Ammonia (SAA) -- 7.5.6 SO2 Using Steam Explosion -- 7.6 Techno-Economic Assessment of Different Technologies for Enzymatic Hydrolysis -- 7.6.1 Separate Hydrolysis and Fermentation (SHF) -- 7.6.2 Simultaneous Saccharification and Fermentation (SSF) -- 7.7 Software Used -- 7.7.1 ASPEN -- 7.7.2 SuperPro Designer -- 7.8 Conclusion and Future Perspectives -- References -- Chapter 8: Recent Advances in Metabolic Engineering and Synthetic Biology for Microbial Production of Isoprenoid-Based Biofuel... -- 8.1 Introduction -- 8.2 Hemiterpenoids -- 8.3 Monoterpenoids -- 8.4 Sesquiterpenoids -- 8.5 Conclusion -- References -- Chapter 9: Applications of Biosensors for Metabolic Engineering of Microorganisms and Its Impact on Biofuel Production -- 9.1 Introduction -- 9.2 An Overview of Biosensor-Based Strategies -- 9.3 Association of Biosensors and Biofuel Metabolic Engineering -- 9.4 Conclusion -- References -- Chapter 10: Recent Progress in CRISPR-Based Technology Applications for Biofuels Production -- 10.1 Introduction -- 10.2 An Overview of CRISPR Approaches -- 10.3 Association of CRISPR Approaches with Production of Biofuels -- 10.4 Conclusion -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    Singapore :Springer Singapore Pte. Limited,
    Schlagwort(e): Biomass energy-Research. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (318 pages)
    Ausgabe: 1st ed.
    ISBN: 9789811393334
    Serie: Clean Energy Production Technologies Series
    DDC: 662.88
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Acknowledgments -- Contents -- About the Editors -- 1: Biofuel: Types and Process Overview -- 1.1 Introduction -- 1.2 Classification of Biofuels -- 1.3 First-Generation Biorefinery -- 1.3.1 Transesterification -- 1.3.2 Ethanol Production -- 1.3.3 Fermentation -- 1.3.4 Anaerobic Fermentation -- 1.3.5 Whole-Crop Utilization -- 1.4 Second-Generation Biofuels -- 1.4.1 Physical Process -- 1.4.1.1 Mechanical Extraction -- 1.4.1.2 Briquetting -- 1.4.1.3 Distillation -- 1.4.2 Thermochemical Conversion -- 1.4.2.1 Combustion -- 1.4.2.2 Gasification -- 1.4.2.2.1 Biomethanol -- 1.4.2.2.2 Methane -- 1.4.2.2.3 Bioethanol Production -- 1.4.3 Liquefaction -- 1.4.4 Pyrolysis of Biomass -- 1.4.4.1 Fast Pyrolysis -- 1.4.4.2 Flash Pyrolysis -- 1.5 Third-Generation Biofuels -- 1.5.1 Open Pond -- 1.5.2 Photobioreactor (PBRs) -- 1.6 Fourth-Generation Biofuel -- 1.6.1 Direct Process for Solar Fuel -- 1.7 Microbial Conversion -- 1.8 Enzymatic Conversion to Biofuel -- 1.8.1 Cellulases -- 1.8.2 Xylanases -- 1.8.3 Lignolytic Enzymes -- 1.8.4 Cellobiose Dehydrogenase (CBDH) -- 1.9 Effect of Surfactant on Enzymatic Hydrolysis -- 1.10 Biofuel from Nanotechnology -- 1.11 Lignin Strategy to Biofuel -- 1.11.1 Lignin Structure -- 1.11.2 Lignin Valorization -- 1.12 Sustainability Criteria -- 1.12.1 Food and Feedstock -- 1.12.2 Water Requirement -- 1.12.3 Emissions -- 1.12.4 Biodiversity -- 1.12.5 Policies -- 1.13 Conclusions -- 1.14 Summary -- References -- 2: Applications of Plant-Based Natural Products to Synthesize Nanomaterial -- 2.1 Introduction -- 2.2 Inorganic Nanoparticles Derived from Natural Sources -- 2.3 Biological Synthesis of Nanomaterials -- 2.4 Processing Natural Materials -- 2.5 Plant-Based Synthesis of Metallic NPs and Their Applications -- 2.5.1 Traditional Strategies of Metals. , 2.5.2 Distinctive Strategies for Union Metallic Nanoparticle -- 2.5.3 Bio-based Reduction Strategies -- 2.6 Parts of Plants Used to Synthesize Nanomaterials -- 2.6.1 Flowers -- 2.6.2 Stem -- 2.6.3 Seeds -- 2.6.4 Fruits -- 2.6.5 Leaves -- 2.7 Plant-Derived Formation of Silver Nanoparticles -- 2.8 Plant-Based Gold Nanoparticle -- 2.9 Plant-Based Zinc Oxide Nanoparticles -- 2.10 Biofuel Applications of Nanoparticles -- 2.10.1 Role in Pretreatment -- 2.10.2 Role in Cellulase Production and Stability -- 2.10.3 Role in Saccharification -- 2.11 Optional Metabolite Impact on Bio-decrease Response -- 2.12 Business Uses of Biosynthesized Nanoparticles -- 2.12.1  NPs in Waste Treatment NPs -- 2.12.2 Beautifiers -- 2.12.3 NPs in Food Industry -- 2.13 Component Blend of Metallic NPs -- 2.14 Conclusion -- References -- 3: Application of Plant-Based Natural Product to Synthesize Nanomaterial -- 3.1 Definition of Nanoparticles -- 3.2 Physicochemical Properties and Application of Nanoparticles -- 3.2.1 Silver Nanoparticles (Ag NPs) -- 3.2.2 Zinc Oxide Nanoparticles (ZnO NPs) -- 3.2.3 Titanium Nanoparticles (TiO2 NPs) -- 3.2.4 Copper Nanoparticles (Cu NPs) -- 3.2.5 Gold Nanoparticles (Au NPs) -- 3.3 Synthesis of Nanoparticles -- 3.4 Biosynthesis of Nanoparticles Using Plants -- 3.4.1 The Role of Plant Metabolites in the Reduction of Metal Ions -- 3.4.2 Factors Affecting the Biological Synthesis of Nanoparticles Using Plants -- 3.4.2.1 Influence of Reaction Temperature -- 3.5 Major Nanoparticles Synthesized by Plant Extracts -- 3.5.1 Biosynthesis of Silver Nanoparticles -- 3.5.2 Biosynthesis of Gold Nanoparticles -- 3.5.3 Biosynthesis of Palladium Nanoparticles -- 3.5.4 Biosynthesis of Titanium Dioxide Nanoparticles -- 3.5.5 Biosynthesis of Zinc Oxide Nanoparticles -- 3.5.6 Biosynthesis of Iron Nanoparticles -- References. , 4: Green Synthesis Approach to Fabricate Nanomaterials -- 4.1 Introduction -- 4.2 Synthesis and Characteristics of Nanomaterials -- 4.2.1 Top-Down Approach -- 4.2.2 Bottom-Up Approach -- 4.2.3 Chemical Approach -- 4.3 Green Synthesis Approaches -- 4.4 Plant-Based Synthesis -- 4.5 Bacterial Synthesis -- 4.6 Fungus- and Alga-Based Synthesis -- 4.7 Actinomycete-Based Nanoparticle Synthesis -- 4.8 Viral Particles for Nanoparticle Synthesis -- 4.9 Biological Derivatives for Nanoparticle Synthesis -- 4.10 Green Nanocatalysts -- 4.11 Bioenergy Applications of Nanoparticles -- 4.12 Prospective Applications of Green Synthesized Nanoparticles -- 4.13 Advantages and Disadvantages of Green Synthesis -- 4.14 Future Directions and Conclusions -- References -- 5: Nanomaterials: Types, Synthesis and Characterization -- 5.1 Introduction -- 5.2 Classification -- 5.2.1 Organic Nanoparticles -- 5.2.1.1 Synthesis of Organic Nanoparticles -- 5.2.2 Inorganic Nanoparticles -- 5.2.2.1 Metal Oxide and Metallic Nanoparticles -- 5.2.2.1.1 Synthesis of Metal and Metal Oxide Nanoparticles -- 5.2.3 Carbon-Based -- 5.2.3.1 Graphene -- 5.2.3.1.1 Synthesis of Graphene -- 5.2.3.2 Carbon Nanotubes (CNTs) -- 5.2.3.3 Synthesis of CNTs -- 5.3 Characterization -- 5.3.1 Size Determination -- 5.3.2 Quantification -- 5.4 Applications of the Nanoparticles in Biofuels -- 5.5 Conclusion and Future Remarks -- References -- 6: Nanotechnology: An Application in Biofuel Production -- 6.1 Introduction -- 6.2 Classification of Biofuel -- 6.3 Production of Biofuel -- 6.3.1 Production Techniques for Biofuel -- 6.3.2 Algal Biodiesel -- 6.3.3 Biohydrogen -- 6.4 Synthesis and Properties of Nanomaterials -- 6.5 Application of Nanotechnology in Biofuel Production -- 6.5.1 Biohydrogen Production -- 6.5.1.1 Dark Fermentation for Production of Biohydrogen. , 6.5.1.2 Biohydrogen Production by the Photofermentation Process -- 6.5.2 Biogas Production -- 6.5.3 Biodiesel Production -- 6.5.4 Bioethanol Production -- 6.6 Conclusion -- References -- 7: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization -- 7.1 Introduction -- 7.2 Different Methods of Nanomaterial Synthesis -- 7.2.1 Sol-Gel Synthesis -- 7.2.2 Arc-Discharge Method -- 7.2.3 Hydrothermal Synthesis -- 7.2.4 Solvothermal Synthesis -- 7.2.5 Combustion Synthesis (CS) -- 7.2.6 Microwave Synthesis -- 7.2.7 Experimental Tools and Characterization of Nanomaterials -- 7.2.8 Structural Characterization -- 7.2.9 X-Ray Diffraction (XRD) -- 7.2.10 Small-Angle X-Ray Scattering (SAXS) -- 7.2.11 Electron Microscopy (EM) -- 7.2.12 Scanning Electron Microscopy (SEM) -- 7.2.13 Transmission Electron Microscopy (TEM) -- 7.2.14 Scanning Probe Microscopy (SPM) -- 7.2.15 Chemical Characterization -- 7.2.16 Optical Spectroscopy -- 7.2.16.1 Photoluminescence and UV/Vis Spectroscopy -- 7.2.16.2 Raman Spectroscopy -- 7.2.17 Electron Spectroscopy -- 7.2.17.1 Energy Dispersive X-Ray Spectroscopy (EDS) -- 7.2.17.2 Auger Electron Spectroscopy (AES) -- 7.2.17.3 X-Ray Photoelectron Spectroscopy (XPS) -- 7.2.18 Ionic Spectrometry -- 7.2.18.1 Rutherford Backscattering Spectrometry (RBS) -- 7.2.18.2 Secondary Ion Mass Spectrometry (SIMS) -- 7.3 Enzyme Immobilization -- 7.4 Techniques for Enzyme Immobilization -- 7.5 Application of Nanomaterial-Immobilized Enzyme in Biofuel Production -- 7.6 Conclusions -- References -- 8: Nanomaterial Synthesis and Mechanism for Enzyme Immobilization: Part II -- 8.1 Introduction -- 8.2 Synthesis of Nanomaterials -- 8.2.1 Different Approaches for the Synthesis of Nanomaterials -- 8.2.1.1 Top-Down Approach -- 8.2.1.2 Bottom-Up Approach -- 8.2.2 Methods Involved in Nanomaterial Synthesis. , 8.2.2.1 Physical Methods -- 8.2.2.1.1 High-Energy Ball Milling (HEBM) -- 8.2.2.1.2 Melt Mixing -- 8.2.2.1.3 Laser Ablation -- 8.2.2.1.4 Physical Vapour Deposition -- 8.2.2.2 Chemical Method -- 8.2.2.2.1 Sol-Gel Method -- 8.2.2.2.2 Microemulsion Method -- 8.2.2.2.3 Hydrothermal Method -- 8.2.2.3 Biological Method -- 8.2.2.3.1 Biosynthesis Using Microorganisms -- 8.2.2.3.2 Nanomaterial Synthesis Using Biomolecules as Templates -- 8.2.2.3.3 Nanomaterial Synthesis Using Plant Extracts -- 8.2.2.4 Hybrid Method -- 8.2.2.4.1 Chemical Vapour Deposition and Chemical Vapour Synthesis -- 8.2.3 Synthesis of Nanoparticles -- 8.2.4 Synthesis of Nanowires, Nanorods and Nanotubes -- 8.3 Enzyme Immobilization -- 8.3.1 Active Nanomaterials in Enzyme Immobilization -- 8.3.2 Immobilized Enzymes in Biotechnology -- 8.3.3 Immobilized Enzymes in Biomedicine -- 8.4 Applications of Nanomaterials in Enzyme Immobilization -- 8.4.1 Gold Nanoparticles as Enzyme Immobilization Templates -- 8.5 Conclusion -- References -- 9: Nanomaterial-Immobilized Biocatalysts for Biofuel Production from Lignocellulose Biomass -- 9.1 Introduction -- 9.2 Enzyme Immobilization -- 9.3 Basic of Enzyme Immobilization -- 9.4 Methods of Immobilization -- 9.5 Adsorption of Enzymes -- 9.6 Covalent Binding of Enzymes -- 9.7 Entrapping of Enzymes -- 9.8 Cross-Linking of Enzymes -- 9.9 Nature of Supporting Material for Enzyme Immobilization -- 9.10 Nanomaterial-Based Enzyme Immobilization -- 9.10.1 Enzyme Immobilization Using Magnetic Nanoparticles -- 9.10.2 Novel Nanoparticles for Enzyme Immobilization -- 9.10.3 Enzyme Immobilization Using Nonmagnetic Nanoparticles -- 9.11 Methods of Nanomaterial-Based Enzyme Immobilization -- 9.12 Analytical Tools for Investigating Enzyme-Nanomaterial Interaction. , 9.13 Applications of Nanoparticles in Enzymatic Hydrolysis of Lignocellulose in Biofuel/Bioenergy.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Schlagwort(e): Entomology ; Biochemistry ; Plant breeding ; Plant genetics ; Biomedical engineering ; Mycology ; Plant biochemistry.
    Beschreibung / Inhaltsverzeichnis: Preface -- Role of solid state fermentation to improve cost economy of cellulase production -- Submerged fermentation for fungal cellulase production -- Significance of process parameters to improve cellulase system; role of non-enzymatic protein to improve cellulose hydrolysis -- Assessment of thermophilic/thermostable cellulase for industrial purposes -- How purity alters cellulase and its cost in industries -- Efficiency analysis of crude verses pure cellulase in industries -- Cost effective techniques for cellulase purification for industries -- Strategies to reuse cellulase and immobilization of enzymes -- Significance of feedstock on industrial cellulases -- Current advancements in recombinant technology for industrial cellulases -- Novel metagenomics, genomics, and secretomics approaches underway to identify improved sources of cellulases -- Index
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (XV, 209 p. 30 illus., 23 illus. in color)
    ISBN: 9783030147266
    Serie: Fungal Biology
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...