GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2017-06-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 496 (2018): 168-177, doi:10.1016/j.epsl.2018.05.022.
    Description: The biogeochemical sulfur cycle is intimately linked to the cycles of carbon, iron, and oxygen, and plays an important role in global climate via weathering reactions and aerosols. However, many aspects of the modern budget of the global sulfur cycle are not fully understood. We present new δ34S measurements on sulfate from more than 160 river samples from different geographical and climatic regions—more than 46% of the world’s freshwater flux to the ocean is accounted for in this estimate of the global riverine sulfur isotope budget. These measurements include major rivers and their tributaries, as well as time series, and are combined with previously published data to estimate the modern flux-weighted global riverine δ34S as 4.4 ± 4.5 ‰ (V-CDT), and 4.8 ± 4.9 ‰ when the most polluted rivers are excluded. Combined with major anion and cation concentrations, the sulfur isotope data allow us to tease apart the relative contributions of different processes to the modern riverine sulfur budget, resulting in new estimates of the flux of riverine sulfate due to the oxidative weathering of pyrites (1.3 ± 0.2 Tmol S/y) and the weathering of sedimentary sulfate minerals (1.5 ± 0.2 Tmol S/y). These data indicate that previous estimates of the global oxidative weathering of pyrite have been too low by a factor of two. As pyrite oxidation coupled to carbonate weathering can act as a source of CO2 to the atmosphere, this global pyrite weathering budget implies that the global CO2 weathering sink is overestimated. Furthermore, the large range of sulfur isotope ratios in modern rivers indicates that secular changes in the lithologies exposed to weathering through time could play a major role in driving past variations in δ34S of seawater.
    Description: This research was funded by a Foster and Coco Stanback postdoctoral fellowship and a Marie Curie Career Integration Grant (CIG14-631752) to AB. JFA acknowledges the support of NSF-OCE grant 1340174 and NSF-EAR grant 1349858. WF acknowledges the support of a grant from the David and Lucile Packard Foundation.
    Keywords: Sulfur ; Rivers ; Weathering ; Pyrite
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2019. This is the author's version of the work. It is posted here by permission of Elsevier Ltd. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 244 (2019): 216-228, doi:10.1016/j.gca.2018.10.012.
    Description: Mountain glaciers store dissolved organic carbon (DOC) that can be exported to river networks and subsequently respired to CO2. Despite this potential importance within the global carbon cycle, the seasonal variability and downstream transport of glacier-derived DOC in mountainous river basins remains largely unknown. To provide novel insight, here we present DOC concentrations and molecular-level dissolved organic matter (DOM) compositions from 22 nested, glaciated catchments (1.4 – 81.8 % glacier cover by area) in the Upper Ganges Basin, Western Himalaya over the course of the Indian summer monsoon (ISM) in 2014. Aliphatic and peptide-like compounds were abundant in glaciated headwaters but were overprinted by soil-derived phenolic, polyphenolic and condensed aromatic material as DOC concentrations increase moving downstream. Across the basin, DOC concentrations and soil-derived compound class contributions decreased sharply from pre- to post-ISM, implying increased relative contribution of glaciated headwater signals as the monsoon progresses. Incubation experiments further revealed a strong compositional control on the fraction of bioavailable DOC (BDOC), with glacier-derived DOC exhibiting the highest bioavailability. We hypothesize that short-term (i.e. in the coming decades) increases in glacier melt flux driven by climate change will further bias exported DOM toward an aliphatic-rich, bioavailable signal, especially during the ISM and post-ISM seasons. In contrast, eventual decreases in glacier melt flux due to mass loss will likely lead to more a soil-like DOM composition and lower bioavailability of exported DOC in the long term.
    Description: We thank Britta Voss (WHOI) for assisting with sample collection; Travis Drake (FSU), and Ekaterina Bulygina (Woods Hole Research Center) for laboratory assistance; and the NHMFL ICR user program (NSF-DMR-1157490) for aiding in data acquisition and analysis. This study was partly supported by NSF-DEB-1145932 to R.G.M.S. J.D.H. was partially supported by the NSF Graduate Research Fellowship Program under grant number 2012126152, with additional support in the form of travel grants awarded by the MIT Houghten Fund and NHMFL. All data used in this study are available in the Supporting Information Tables S1 and S2.
    Keywords: Dissolved organic matter ; Eco-hydrology ; Glaciers ; Himalaya ; Monsoon
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(7), (2021): e2020JG005977, https://doi.org/10.1029/2020JG005977.
    Description: Increasing Arctic temperatures are thawing permafrost soils and liberating ancient organic matter, but the fate of this material remains unclear. Thawing of permafrost releases dissolved organic matter (DOM) into fluvial networks. Unfortunately, tracking this material in Arctic rivers such as the Kolyma River in Siberia has proven challenging due to its high biodegradability. Here, we evaluate late summer abruptly thawed yedoma permafrost dissolved organic carbon (DOC) inputs from Duvannyi Yar. We implemented ultrahigh-resolution mass spectrometry alongside ramped pyrolysis oxidation (RPO) and isotopic analyses. These approaches offer insight into DOM chemical composition and DOC radiocarbon values of thermochemical components for a permafrost thaw stream, the Kolyma River, and their biodegraded counterparts (n = 4). The highly aliphatic molecular formula found in undegraded permafrost DOM contrasted with the comparatively aliphatic-poor formula of Kolyma River DOM, represented by an 8.9% and 2.6% relative abundance, respectively, suggesting minimal inputs of undegraded permafrost DOM in the river. RPO radiocarbon fractions of Kolyma River DOC exhibited no “hidden” aged component indicative of permafrost influence. Thermostability analyses suggested that there was limited biodegraded permafrost DOC in the Kolyma River, in part determined by the formation of high-activation energy (thermally stable) biodegradation components in permafrost DOM that were lacking in the Kolyma River. A mixing model based on thermostability and radiocarbon allowed us to estimate a maximum input of between 0.8% and 7.7% of this Pleistocene-aged permafrost to the Kolyma River DOC. Ultimately, our findings highlight that export of modern terrestrial DOC currently overwhelms any permafrost DOC inputs in the Kolyma River.
    Description: This work was funded by NSF grants ANT-1203885 and PLR-1500169 to R.G.M.S. The work was also supported by the National Science Foundation Division of Chemistry through DMR-1644779 and the State of Florida.
    Description: 2022-01-09
    Keywords: Permafrost ; Dissolved organic carbon ; Dissolved organic matter ; FT-ICR MS ; Ramped pyrolysis oxidation ; Arctic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(4), (2021): e2020GB006895, https://doi.org/10.1029/2020GB006895.
    Description: The Amazon River drains a diverse tropical landscape greater than 6 million km2, culminating in the world's largest export of freshwater and dissolved constituents to the ocean. Here, we present dissolved organic carbon (DOC), organic and inorganic nitrogen (DON, DIN), orthophosphate (PO43−), and major and trace ion concentrations and fluxes from the Amazon River using 26 samples collected over three annual hydrographs. Concentrations and fluxes were predominantly controlled by the annual wet season flood pulse. Average DOC, DON, DIN, and PO43− fluxes (±1 s.d.) were 25.5 (±1.0), 1.14 (±0.05), 0.82 (±0.03), and 0.063 (±0.003) Tg yr−1, respectively. Chromophoric dissolved organic matter absorption (at 350 nm) was strongly correlated with DOC concentrations, resulting in a flux of 74.8 × 106 m−2 yr−1. DOC and DON concentrations positively correlated with discharge while nitrate + nitrite concentrations negatively correlated, suggesting mobilization and dilution responses, respectively. Ammonium, PO43−, and silica concentrations displayed chemostatic responses to discharge. Major and trace ion concentrations displayed clockwise hysteresis (except for chloride, sodium, and rubidium) and exhibited either dilution or chemostatic responses. The sources of weathered cations also displayed seasonality, with the highest proportion of carbonate- and silicate-derived cations occurring during peak and baseflow, respectively. Finally, our seasonally resolved weathering model resulted in an average CO2 consumption yield of (3.55 ± 0.11) × 105 mol CO2 km−2 yr−1. These results represent an updated and temporally refined quantification of dissolved fluxes that highlight the strong seasonality of export from the world's largest river and set a robust baseline against which to gauge future change.
    Description: This work was supported by a grant from the Harbourton Foundation to R. G. M. Spencer and R. M. Holmes. T. W. Drake was supported by ETH Zurich core funding to J. Six. R. G. M. Spencer was additionally supported by NSF OCE-1333157.
    Description: 2021-09-15
    Keywords: Amazon river ; Dissolved organic carbon ; Fluxes ; Weathering ; Geochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 35(6), (2021): e2021GB006938, https://doi.org/10.1029/2021GB006938.
    Description: As climate-driven El Niño Southern Oscillation (ENSO) events are projected to increase in frequency and severity, much attention has focused on impacts regarding ecosystem productivity and carbon balance in Amazonian rainforests, with comparatively little attention given to carbon dynamics in fluvial ecosystems. In this study, we compared the wet 2012 La Niña period to the following normal hydrologic period in the Amazon River. Elevated water flux during the La Niña period was accompanied by dilution of inorganic ion concentrations. Furthermore, the La Niña period exported 2.77 Tg C yr−1 more dissolved organic carbon (DOC) than the normal period, an increase greater than the annual amount of DOC exported by the Mississippi River. Using ultra-high-resolution mass spectrometry, we detected both intra- and interannual differences in dissolved organic matter (DOM) composition, revealing that DOM exported during the dry season and the normal period was more aliphatic, whereas compounds in the wet season and following the La Niña event were more aromatic, with ramifications for its environmental role. Furthermore, as this study has the highest temporal resolution DOM compositional data for the Amazon River to-date we showed that compounds were highly correlated to a 6-month lag in Pacific temperature and pressure anomalies, suggesting that ENSO events could impact DOM composition exported to the Atlantic Ocean. Therefore, as ENSO events increase in frequency and severity into the future it seems likely that there will be downstream consequences for the fate of Amazon Basin-derived DOM concurrent with lag periods as described here.
    Description: This work was partially supported by National Science Foundation grant OCE-1464396 to Robert G. M. Spencer and funding from the Harbourton Foundation to Robert G. M. Spencer, R. Max Holmes, and Bernhard Peucker-Ehrenbrink.
    Description: 2021-12-11
    Keywords: Amazon river ; carbon cycling ; dissolved organic carbon ; dissolved organic matter ; ENSO ; FT-ICR MS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hawkings, J. R., Linhoff, B. S., Wadham, J. L., Stibal, M., Lamborg, C. H., Carling, G. T., Lamarche-Gagnon, G., Kohler, T. J., Ward, R., Hendry, K. R., Falteisek, L., Kellerman, A. M., Cameron, K. A., Hatton, J. E., Tingey, S., Holt, A. D., Vinsova, P., Hofer, S., Bulinova, M., Větrovský, T., Meire, L., Spencer, R. G. M. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nature Geoscience, 14, (2021): 496-502, https://doi.org/10.1038/s41561-021-00753-w.
    Description: The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km−2 year−1) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km−2 year−1). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year−1), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year−1). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.
    Description: This research is part of a European Commission Horizon 2020 Marie Skłodowska-Curie Actions fellowship ICICLES (grant agreement #793962) to J.R.H. Greenland terrestrial research campaigns were funded by a UK NERC standard grant (NE/I008845/1) and a Leverhulme Trust Research Grant (RPG-2016-439) to J.L.W., with additional support provided by a Royal Society Wolfson Merit Award to J.L.W. Additional funding came from Czech Science Foundation grants (GACR; 15-17346Y and 18-12630S) to M.S. Fjord fieldwork was supported by European Research Council grant ICY-LAB (grant agreement 678371) and Royal Society Enhancement Award (grant RGF\EA\181036) to K.R.H. L.M. was funded by research programme VENI (0.16.Veni.192.150, NWO). T.J.K. was supported by Charles University Research Centre program no. 204069. The authors thank the captain and crew of the RV Kisaq and staff at the Greenland Institute of Natural Resources for assistance during fjord fieldwork, and all those involved with fieldwork at Leverett Camp during the 2012 and 2015 field campaigns. M. Cooper is thanked for providing the geological overview file for Extended Data Fig. 1a, and K. Mankoff for help in generating the modelled GrIS discharge datasets. The authors also thank G. White in the geochemistry group at the National High Magnetic Field Geochemistry Laboratory, which is supported by NSF DMR-1644779 and the State of Florida, for analytical support.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 40 (2013): 511–516, doi:10.1002/grl.50160.
    Description: Seasonal variations in inorganic carbon chemistry and associated fluxes from the Congo River were investigated at Brazzaville-Kinshasa. Small seasonal variation in dissolved inorganic carbon (DIC) was found in contrast with discharge-correlated changes in pH, total alkalinity (TA), carbonate species, and dissolved organic carbon (DOC). DIC was almost always greater than TA due to the importance of CO2*, the sum of dissolved CO2 and carbonic acid, as a result of low pH. Organic acids in DOC contributed 11–61% of TA and had a strong titration effect on water pH and carbonate speciation. The CO2* and bicarbonate fluxes accounted for ~57% and 43% of the DIC flux, respectively. Congo River surface water released CO2 at a rate of ~109 mol m−2 yr−1. The basin-wide DIC yield was ~8.84 × 104 mol km−2 yr−1. The discharge normalized DIC flux to the ocean amounted to 3.11 × 1011 mol yr−1. The DOC titration effect on the inorganic carbon system may also be important on a global scale for regulating carbon fluxes in rivers.
    Description: This project was supported by a grant from the National Science Foundation for the Global Rivers Project (NSF 0851101).
    Description: 2013-08-14
    Keywords: Inorganic carbon ; Carbon dioxide ; Carbon fluxes ; pH ; Alkalinity ; Congo River
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 30 (2016): 629–643, doi:10.1002/2015GB005351.
    Description: Northern rivers connect a land area of approximately 20.5 million km2 to the Arctic Ocean and surrounding seas. These rivers account for ~10% of global river discharge and transport massive quantities of dissolved and particulate materials that reflect watershed sources and impact biogeochemical cycling in the ocean. In this paper, multiyear data sets from a coordinated sampling program are used to characterize particulate organic carbon (POC) and particulate nitrogen (PN) export from the six largest rivers within the pan-Arctic watershed (Yenisey, Lena, Ob', Mackenzie, Yukon, Kolyma). Together, these rivers export an average of 3055 × 109 g of POC and 368 × 109 g of PN each year. Scaled up to the pan-Arctic watershed as a whole, fluvial export estimates increase to 5767 × 109 g and 695 × 109 g of POC and PN per year, respectively. POC export is substantially lower than dissolved organic carbon export by these rivers, whereas PN export is roughly equal to dissolved nitrogen export. Seasonal patterns in concentrations and source/composition indicators (C:N, δ13C, Δ14C, δ15N) are broadly similar among rivers, but distinct regional differences are also evident. For example, average radiocarbon ages of POC range from ~2000 (Ob') to ~5500 (Mackenzie) years before present. Rapid changes within the Arctic system as a consequence of global warming make it challenging to establish a contemporary baseline of fluvial export, but the results presented in this paper capture variability and quantify average conditions for nearly a decade at the beginning of the 21st century.
    Description: National Science Foundation Grant Numbers: 0229302, 0732985; U.S. Geological Survey; Department of Indian and Northern Affairs
    Description: 2016-11-11
    Keywords: Arctic ; River ; Carbon ; Nitrogen ; Watershed ; Export
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...