GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (20)
Document type
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] About 850,000 years ago, the period of the glacial cycles changed from 41,000 to 100,000 years. This mid-Pleistocene climate transition has been attributed to global cooling, possibly caused by a decrease in atmospheric carbon dioxide concentrations. However, evidence for such cooling is ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 4 (1998), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The effects of elevated CO2 on tropical ecosystems were studied in the artificial rain forest mesocosm at Biosphere 2, a large-scale and ecologically diverse experimental facility located in Oracle, Arizona. The ecosystem responses were assessed by comparing the whole-system net gas exchange (NEE) upon changing CO2 levels from 900 to 450 ppmV. The day-NEE was significantly higher in the elevated CO2 treatment. In both experiments, the NEE rates were similar to values observed in natural analogue systems. Variations in night-NEE, reflecting both soil CO2 efflux and plants respiration, covaried with temperature but showed no clear correlation with atmospheric CO2 levels. After correcting for changes in CO2 efflux we show that the rain forest net photosynthesis increased in response to increasing atmospheric CO2. The photosynthetic enhancement was expressed in higher quantum yields, maximum assimilation rates and radiation use efficiency. The results suggest that photosynthesis in large tropical trees is CO2 sensitive, at least following short exposures of days to weeks. Taken at face value, the data suggest that as a result of anthropogenic emissions of CO2, tropical rain forests may shift out of steady state, and become a carbon sink at least for short periods. However, a better understanding of the unique conditions and phenomena in Biosphere 2 is necessary before these results are broadly useful.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-01
    Description: The Eocene-Oligocene transition (EOT; ca. 33–34 Ma) was a time of pronounced climatic change, marked by the establishment of continental-scale Antarctic ice sheets. The timing and extent of temperature change associated with the EOT is controversial. Here we present multiproxy EOT climate records (~15–34 k.y. resolution) from St. Stephens Quarry, Alabama, USA, derived from foraminiferal Mg/Ca, d18O, and TEX86. We constrain sea-surface temperatures (SSTs) in the latest Eocene and early Oligocene and address the issue of climatic cooling during the EOT. Paleotemperatures derived from planktic foraminifera Mg/Ca and TEX86 are remarkably consistent and indicate late Eocene subtropical SSTs of 〉28 °C. There was substantial and accelerated cooling of SSTs (3–4 °C) through the latest Eocene “precursor” d18O shift (EOT-1), prior to Oligocene Isotope-1 (Oi-1). Our multispecies planktic foraminiferal d18O records diverge at the E/O boundary (33.7 Ma), signifying enhanced seasonality in the earliest Oligocene in the Gulf of Mexico.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-05-01
    Description: We obtained global sea-level (eustatic) estimates with a peak of ∼22 m higher than present for the Pliocene interval 2.7–3.2 Ma from backstripping in Virginia (United States), New Zealand, and Enewetak Atoll (north Pacific Ocean), benthic foraminiferal δ18O values, and Mg/Ca-δ18O estimates. Statistical analysis indicates that it is likely (68% confidence interval) that peak sea level was 22 ± 5 m higher than modern, and extremely likely (95%) that it was 22 ± 10 m higher than modern. Benthic foraminiferal δ18O values appear to require that the peak was
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  EPIC3PNAS, National Academy of Sciences, 111(34), pp. E3501-E3505, ISSN: 0027-8424
    Publication Date: 2016-12-09
    Description: A recent temperature reconstruction of global annual temperature shows Early Holocene warmth followed by a cooling trend through the Middle to Late Holocene [Marcott SA, et al., 2013, Science 339(6124):1198–1201]. This global cooling is puzzling because it is opposite from the expected and simulated global warming trend due to the retreating ice sheets and rising atmospheric greenhouse gases. Our critical reexamination of this contradiction between the reconstructed cooling and the simulated warming points to potentially significant biases in both the seasonality of the proxy reconstruction and the climate sensitivity of current climate models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature 460 (2009): 1113-1116, doi:10.1038/nature08233.
    Description: Northern Hemisphere surface temperature reconstructions suggest that the late twentieth century was warmer than any other time during the past 500 years and possibly any time during the past 1,300 years. These temperature reconstructions are based largely on terrestrial records from extra-tropical or highelevation sites; however, global average surface temperature changes closely follow those of the global tropics, which are 75% ocean. In particular, the tropical Indo- Pacific warm pool (IPWP) represents a major heat reservoir that both influences global atmospheric circulation and responds to remote northern latitude forcings. Here we present a decadally resolved continuous sea surface temperature (SST) reconstruction from the IPWP that spans the past two millennia and overlaps the instrumental record, enabling both a direct comparison of proxy data to the instrumental record and an evaluation of past changes in the context of twentieth century trends. Our record from the Makassar Strait, Indonesia, exhibits trends that are similar to a recent Northern Hemisphere temperature reconstruction. Reconstructed SST was, however, within error of modern values during the Medieval Warm Period from about AD 1000 to AD 1250, towards the end of the Medieval Warm Period. SSTs during the Little Ice Age (approximately ad 1550–1850) were variable, and 0.5 to 1°C colder than modern values during the coldest intervals. A companion reconstruction of δ18O of sea water—a sea surface salinity and hydrology indicator— indicates a tight coupling with the East Asian monsoon system and remote control of IPWP hydrology on centennial–millennial timescales, rather than a dominant influence from local SST variation.
    Description: This work was financially supported by the US NSF and the Ocean Climate Change Institute of WHOI.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.
    Description: Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∼11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∼4 km water depth.
    Description: Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149.
    Keywords: Lake Agassiz ; 8200 year event ; Meltwater pulse
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA2207, doi:10.1029/2011PA002244.
    Description: At the peak of the previous interglacial period, North Atlantic and subpolar climate shared many features in common with projections of our future climate, including warmer-than-present conditions and a diminished Greenland Ice Sheet (GIS). Here we portray changes in North Atlantic hydrography linked with Greenland climate during Marine Isotope Stage (MIS) 5e using (sub)centennially sampled records of planktonic foraminiferal isotopes and assemblage counts and ice-rafted debris counts, as well as modern analog technique and Mg/Ca-based paleothermometry. We use the core MD03-2664 recovered from a high accumulation rate site (∼34 cm/kyr) on the Eirik sediment drift (57°26.34′N, 48°36.35′W). The results indicate that surface waters off southern Greenland were ∼3–5°C warmer than today during early MIS 5e. These anomalously warm sea surface temperatures (SSTs) prevailed until the isotopic peak of MIS 5e when they were interrupted by a cooling event beginning at ∼126 kyr BP. This interglacial cooling event is followed by a gradual warming with SSTs subsequently plateauing just below early MIS 5e values. A planktonic δ18O minimum during the cooling event indicates that marked freshening of the surface waters accompanied the cooling. We suggest that switches in the subpolar gyre hydrography occurred during a warmer climate, involving regional changes in freshwater fluxes/balance and East Greenland Current influence in the study area. The nature of these hydrographic transitions suggests that they are most likely related to large-scale circulation dynamics, potentially amplified by GIS meltwater influences.
    Description: This work is a contribution of the European Science Foundation EuroMARC program, through the AMOCINT project, funded through grants from the Research Council of Norway (RCN) and contributes to EU-FP7 IP Past4Future. N. Irvalı was additionally funded by an ESF EUROCORES Short-term Visit grant and a RCN Leiv Eiriksson mobility grant to support research stays at the University of Edinburgh, UK, and Woods Hole Oceanographic Institution, USA, respectively, during which parts of the data for this paper were acquired. U. Ninnemann was funded by a University of Bergen Meltzer research grant.
    Description: 2012-11-12
    Keywords: Eirik Drift ; MIS 5e ; North Atlantic ; Last interglacial ; Multiproxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth and Planetary Science Letters 387 (2014): 240–251, doi:10.1016/j.epsl.2013.11.032.
    Description: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ∼19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (∼12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived δ18O of seawater (δ18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional δ18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the δ18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Description: ThisworkwasfundedbytheNationalScienceFoundation;theOceanandClimateChangeInstituteandtheAcademicProgramsOfficeatWoodsHoleOceano-graphicInstitution;BMBF(PABESIA);andDFG(He3412/15-1)
    Keywords: Indo-Pacific ; Eastern Equatorial Pacific ; δ18O of seawater ; Deglaciation ; Heat transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: text/plain
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...