GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
  • 1
    Publication Date: 2024-03-27
    Description: Roller table experiments with Thalassiosira pseudonana, a small centric diatom, were conducted to produce marine snow aggregates in six treatments: Control (pCO2 = 400 ppm), OA (pCO2 = 750 ppm), water accommodated fraction of oil (WAF), OAWAF, diluted chemically enhanced WAF (DCEWAF), and OADCEWAF. Measurements included intracellular photophysiological responses, oil concentrations and polycyclic aromatic hydrocarbons (PAHs), aggregate morphology, transparent exopolymeric particles (TEP), and extracellular polymeric substances (EPS) to investigate if OA will affect the response to oil spill conditions. The experiments were conducted in the dark to eliminate cell replication and photosynthesis and used both stationary and exponential growth phases.
    Keywords: Alkalinity, total; Aragonite saturation state; Area; Aspect ratio; Bacillariophyta; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates mass; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cell density; Chlorophyll a; Chromista; Connectivity between photosystem II; Counts; Effective absorbance cross-section of photosystem II; Equivalent spherical diameter; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth phase; Laboratory experiment; Laboratory strains; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Oil equivalent; Optical density; Organic toxins; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Polycyclic aromatic hydrocarbons; Polycyclic aromatic hydrocarbons, mass; Primary production/Photosynthesis; Proteins; Relative fluorescence intensity, ratio; Salinity; Settling time; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Temperature, water; Temperature, water, standard deviation; Thalassiosira pseudonana; Time point, descriptive; Transparent exopolymer particles as Gum Xanthan equivalents per volume; Treatment; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 1451 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Extracellular polymeric substances (EPS), produced by microorganisms, are implicated for greatly influencing the fate of environmental contaminants, including oil. Transparent exopolymeric particles (TEP) are gel-like acidic polysaccharide particles that can be stained with Alcian blue, whereas Coomassie stainable particles (CSP) contain proteins and are stained with Coomassie brilliant blue. Marine microgels are reversibly formed from EPS. These terms are often used interchangeably, but they have rarely been measured simultaneously. Mesocosm and bottle experiments provided an opportunity to compare EPS, TEP, CSP and microgels in a water-accommodated fraction (WAF) of oil and seawater (control). Our results reveal that the biopolymers making up EPS, TEP and CSP consisted primarily of polysaccharides and proteins, mostly likely as proteoglycans and glycoproteins. Significant correlations were found between concentrations of TEP-C vs particulate organic carbon (POC), TEP-C vs particulate organic nitrogen (PON), TEP vs EPS, TEP vs CSP, TEP vs carbohydrates, proteins, CSP and carbohydrates, CSP vs proteins, and carbohydrates vs proteins. Chemical analysis of whole particles and colloids yielded both protein and polysaccharides concentrations higher than those in EDTA extraction, thus providing an upper limit of actual EPS contents in the particulate phase. The EPS that was electrostatically held onto particle surfaces (extractable by 1% EDTA) accounted for a minor (~4%) yet relatively constant proportion of TEP. Overall, the concentrations of the three terms ranked in the order of [gels] 〉 [TEP] 〉 [particulate EPS] in the water. Lastly, spectrophotometric methods have limitations in identifying complex or refractory polysaccharides, as evidenced by the comparison between NMR-quantified EPS and the total EPS determined by spectrophotometric methods. This study is the first time these terms were compared in the same sample. They provide useful information when reviewing historical TEP, CSP, EPS data collected field- and laboratory-studies, and provide linkages between them. In addition, they also demonstrate that they could provide complementary information relevant to ecosystem and flux studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quigg, A., Farrington, J. W., Gilbert, S., Murawski, S. A., & John, V. T. A decade of GoMRI dispersant science: lessons learned and recommendations for the future. Oceanography, 34(1), (2021): 98–111, https://doi.org/10.5670/oceanog.2021.119.
    Description: Dispersants are among a number of options available to oil spill responders. The goals of this technique are to remove oil from surface waters in order to reduce exposure of surface-​dwelling organisms, to keep oil slicks from impacting sensitive shorelines, and to protect responders from volatile organic compounds. During the Deepwater Horizon response, unprecedented volumes of dispersants (Corexit 9500 and 9527) were both sprayed on surface slicks from airplanes and applied directly at the wellhead (~1,500 m water depth). A decade of research followed, leading to a deeper understanding of dispersant effectiveness, fate, and effects. These studies resulted in new knowledge regarding dispersant formulations, efficacy, and effects on organisms and processes at a broad range of exposure levels, and about potential environmental and human impacts. Future studies should focus on the application of high volumes of dispersants subsea and the long-term fate and effects of dispersants and dispersed oil. In considering effects, the research and applications of the knowledge gained should go beyond concerns for acute toxicity and consider sublethal impacts at all levels of biological organization. Contingency planning for the use of dispersants during oil spill response should consider more deeply the temporal duration, effectiveness (especially of subsurface applications), spatial reach, and volume applied.
    Description: The authors gratefully acknowledge support from the Gulf of Mexico Research Initiative. We thank all those who participated as we worked to synthesize the syntheses of dispersant work by those funded by GoMRI. We also acknowledge the time and wisdom shared by Chuck Wilson (GoMRI), Peter Brewer (MBARI), Ann Hayward Walker (SEA Consulting Group), Nancy Kinner (Coastal Response Research Center), Victoria Broje (Shell Projects and Technology, Houston), Jürgen Rullkötter (University of Oldenburg, Germany), Claire B. Paris-Limouzy (University of Miami Rosenstiel School of Marine & Atmospheric Science), Michael Schlueter (Technische Universität Hamburg), and Peter Santschi (Texas A&M University at Galveston). In addition, this synthesis effort would not have been possible without the tremendous support of Michael Feldman (Consortium for Ocean Leadership), who kept us all moving along with an iron fist and gentle laugh. Figures 1, 2, 4, and 5 were prepared by the amazing Natalie Renier (Woods Hole Oceanographic Institution).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: radionuclide uptake by humic acids
    Description: The uptake and binding of six particle-reactive and/or redox-sensitive radionuclides (210Pb, 234Th, 7Be, 59Fe, 237Np and 233Pa) with different organic functionalities of three size fractions. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/738833
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Dataset: sds_page
    Description: Laboratory studies were conducted to examine the sorption of selected radionuclides (234Th, 233Pa, 210Po, 210Pb, and 7Be) onto inorganic (pure silica and acid-cleaned diatom frustules) and organic (diatom cells with or without silica frustules) particles in natural seawater and the role of templating biomolecules and exopolymeric substances (EPS) extracted from the same species of diatom, Phaeodactylum tricornutum, in the sorption process. The range of partition coefficients (Kd, reported as logKd) of radionuclides between water and the different particle types was 4.78–6.69 for 234Th, 5.23–6.71 for 233Pa, 4.44–5.86 for 210Pb, 4.47–4.92 for 210Po, and 4.93–7.23 for 7Be, similar to values reported for lab and field determinations. The sorption of all radionuclides was significantly enhanced in the presence of organic matter associated with particles, resulting in Kd one to two orders of magnitude higher than for inorganic particles only, with highest values for 7Be (logKd of 7.2). Results further indicate that EPS and frustule-embedded biomolecules in diatom cells are responsible for the sorption enhancement rather than the silica shell itself. By separating radiolabeled EPS via isoelectric focusing, we found that isoelectric points are radionuclide specific, suggesting that each radionuclide binds to specific biopolymeric functional groups, with the most efficient binding sites likely occurring in acid polysaccharides, iron hydroxides, and proteins. Further progress in evaluating the effects of diatom frustule–related biopolymers on binding, scavenging, and fractionation of radionuclides would require the application of molecular-level characterization techniques. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/764688
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Dataset: Partition_coefficients_for_COC
    Description: To study the binding mechanisms of radionuclides to organic moieties in colloidal organic matter (COM),marine colloids (1 kDa–0.2 μm) were isolated by cross-flow ultrafiltration from seawater of the west Pacific Ocean and the northern Gulf of Mexico. For the same purpose, exopolymeric substances (EPS) produced by laboratory cultured diatoms were collected as well. In our study areas, colloidal organic carbon (COC) concentrations ranged from 6.5 to 202 μg-C/L in the Pacific Ocean, and were 808 μg-C/L in the Gulf of Mexico. The COM compositions (organic carbon, organic nitrogen, proteins, total hydrolysable amino acids, total polysaccharides, uronic acids, hydroxamate siderophores, hydroquinone) were quantified to examine the relationships between partition coefficients (Kc) of five different radionuclides, 234Th, 233Pa, 210Pb, 210Po and 7Be, and concentration ratios to COC of individual chelating biomolecules that could potentially act as a chelating moiety. The range of partition coefficients (Kc, reported as logKc) of radionuclides between water and the different colloidal materials was 5.12 to 5.85 for 234Th, 5.19 to 6.01 for 233Pa, 4.21 to 4.85 for 210Pb, 4.87 to 5.68 for 210Po, and 4.49 to 4.92 for 7Be, similar to values previously reported for lab and field determinations under different particle concentrations. While any relationship obtained between Kc and abundance of specific moieties could not be taken as proving the existence of colloidal organic binding ligands for the different radionuclides, it could suggest possible organic moieties involved in the scavenging of these natural radionuclides. Together with results from isoelectric focusing of radiolabeled COM, we conclude that binding to different biomolecules is nuclide-specific, with colloidal hydroxamate siderophoric moieties being important for the binding of Th and Pa radionuclides. Hydroquinones/ quinone (HQ/Q) facilitated redox and chelation reactions seem to be involved in the binding of Pa and Be. However, the actual mechanisms are not clear. Individual amino acids, proteins, total polysaccharides and uronic acids did not yield significant relationships with logKc values of the different radionuclides. Nonetheless, our results provide new insights into the relative importance of different potential ligand moieties in COM in the binding and possible scavenging of specific radionuclides in the ocean. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/764780
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Dataset: IEF
    Description: Isoelectric focussing electrophoresis of percent activity of radioisotopes and major constituents incubated in natural colloidal organic matter collected from stations E1, E3, C9, C11. To study the binding mechanisms of radionuclides to organic moieties in colloidal organic matter (COM),marine colloids (1 kDa–0.2 μm) were isolated by cross-flow ultrafiltration from seawater of the west Pacific Ocean and the northern Gulf of Mexico. For the same purpose, exopolymeric substances (EPS) produced by laboratory cultured diatoms were collected as well. In our study areas, colloidal organic carbon (COC) concentrations ranged from 6.5 to 202 μg-C/L in the Pacific Ocean, and were 808 μg-C/L in the Gulf of Mexico. The COM compositions (organic carbon, organic nitrogen, proteins, total hydrolysable amino acids, total polysaccharides, uronic acids, hydroxamate siderophores, hydroquinone) were quantified to examine the relationships between partition coefficients (Kc) of five different radionuclides, 234Th, 233Pa, 210Pb, 210Po and 7Be, and concentration ratios to COC of individual chelating biomolecules that could potentially act as a chelating moiety. The range of partition coefficients (Kc, reported as logKc) of radionuclides between water and the different colloidal materials was 5.12 to 5.85 for 234Th, 5.19 to 6.01 for 233Pa, 4.21 to 4.85 for 210Pb, 4.87 to 5.68 for 210Po, and 4.49 to 4.92 for 7Be, similar to values previously reported for lab and field determinations under different particle concentrations. While any relationship obtained between Kc and abundance of specific moieties could not be taken as proving the existence of colloidal organic binding ligands for the different radionuclides, it could suggest possible organic moieties involved in the scavenging of these natural radionuclides. Together with results from isoelectric focusing of radiolabeled COM, we conclude that binding to different biomolecules is nuclide-specific, with colloidal hydroxamate siderophoric moieties being important for the binding of Th and Pa radionuclides. Hydroquinones/ quinone (HQ/Q) facilitated redox and chelation reactions seem to be involved in the binding of Pa and Be. However, the actual mechanisms are not clear. Individual amino acids, proteins, total polysaccharides and uronic acids did not yield significant relationships with logKc values of the different radionuclides. Nonetheless, our results provide new insights into the relative importance of different potential ligand moieties in COM in the binding and possible scavenging of specific radionuclides in the ocean. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/764794
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: ATR_FTIR_Absorbance
    Description: Laboratory studies were conducted to examine the sorption of selected radionuclides (234Th, 233Pa, 210Po, 210Pb, and 7Be) onto inorganic (pure silica and acid-cleaned diatom frustules) and organic (diatom cells with or without silica frustules) particles in natural seawater and the role of templating biomolecules and exopolymeric substances (EPS) extracted from the same species of diatom, Phaeodactylum tricornutum, in the sorption process. The range of partition coefficients (Kd, reported as logKd) of radionuclides between water and the different particle types was 4.78–6.69 for 234Th, 5.23–6.71 for 233Pa, 4.44–5.86 for 210Pb, 4.47–4.92 for 210Po, and 4.93–7.23 for 7Be, similar to values reported for lab and field determinations. The sorption of all radionuclides was significantly enhanced in the presence of organic matter associated with particles, resulting in Kd one to two orders of magnitude higher than for inorganic particles only, with highest values for 7Be (logKd of 7.2). Results further indicate that EPS and frustule-embedded biomolecules in diatom cells are responsible for the sorption enhancement rather than the silica shell itself. By separating radiolabeled EPS via isoelectric focusing, we found that isoelectric points are radionuclide specific, suggesting that each radionuclide binds to specific biopolymeric functional groups, with the most efficient binding sites likely occurring in acid polysaccharides, iron hydroxides, and proteins. Further progress in evaluating the effects of diatom frustule–related biopolymers on binding, scavenging, and fractionation of radionuclides would require the application of molecular-level characterization techniques. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/764546
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Dataset: Isoelectric_Focusing_electrophoresis
    Description: Laboratory studies were conducted to examine the sorption of selected radionuclides (234Th, 233Pa, 210Po, 210Pb, and 7Be) onto inorganic (pure silica and acid-cleaned diatom frustules) and organic (diatom cells with or without silica frustules) particles in natural seawater and the role of templating biomolecules and exopolymeric substances (EPS) extracted from the same species of diatom, Phaeodactylum tricornutum, in the sorption process. The range of partition coefficients (Kd, reported as logKd) of radionuclides between water and the different particle types was 4.78–6.69 for 234Th, 5.23–6.71 for 233Pa, 4.44–5.86 for 210Pb, 4.47–4.92 for 210Po, and 4.93–7.23 for 7Be, similar to values reported for lab and field determinations. The sorption of all radionuclides was significantly enhanced in the presence of organic matter associated with particles, resulting in Kd one to two orders of magnitude higher than for inorganic particles only, with highest values for 7Be (logKd of 7.2). Results further indicate that EPS and frustule-embedded biomolecules in diatom cells are responsible for the sorption enhancement rather than the silica shell itself. By separating radiolabeled EPS via isoelectric focusing, we found that isoelectric points are radionuclide specific, suggesting that each radionuclide binds to specific biopolymeric functional groups, with the most efficient binding sites likely occurring in acid polysaccharides, iron hydroxides, and proteins. Further progress in evaluating the effects of diatom frustule–related biopolymers on binding, scavenging, and fractionation of radionuclides would require the application of molecular-level characterization techniques. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/764608
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1356453
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...