GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Irwin, Andrew J; Nelles, Andrew M; Finkel, Zoe V (2012): Phytoplankton niches estimated from field data. Limnology and Oceanography, 57(3), 787-797, https://doi.org/10.4319/lo.2012.57.3.0787
    Publication Date: 2023-01-13
    Description: We combine phytoplankton occurrence data for 119 species from the continuous plankton recorder with climatological environmental variables in the North Atlantic to obtain ecological response functions of each species using the MaxEnt statistical method. These response functions describe how the probability of occurrence of each species changes as a function of environmental conditions and can be reduced to a simple description of phytoplankton realized niches using the mean and standard deviation of each environmental variable, weighted by its response function. Although there was substantial variation in the realized niche among species within groups, the envelope of the realized niches of North Atlantic diatoms and dinoflagellates are mostly separate in niche space.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Keywords: Species; Variable; x; y
    Type: Dataset
    Format: text/tab-separated-values, 1646316 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-12
    Keywords: Group; Number of observations; Parameter; Species
    Type: Dataset
    Format: text/tab-separated-values, 6345 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Phytoplankton is a nineteenth century ecological construct for a biologically diverse group of pelagic photoautotrophs that share common metabolic functions but not evolutionary histories. In contrast to terrestrial plants, a major schism occurred in the evolution of the eukaryotic ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    The @journal of eukaryotic microbiology 52 (2005), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The genome size of marine phytoplankton is in the order of 106–1011 base pairs. Within the phytoplankton it has often been assumed that dinoflagellates have extraordinarily large genomes that significantly contribute to their nutrient requirements. We test this hypothesis by compiling cell size and genome size data from across many phytoplankton lineages, and apply a simple regression model. Our results suggest that dinoflagellates do not have anomalously large genomes, but instead scale with cell size with the same slope and intercept as many other diverse phytoplankton taxa. Based on the known correlations of genome size and genome content in diverse taxa, we model the approximate expected genome structure in unsequenced lineages of marine phytoplankton. Based on this model, we hypothesize that retrotransposons play a significant role in genome size in marine phytoplankton.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 35 (2004), S. 523-556 
    ISSN: 1543-592X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: The evolutionary succession of marine photoautotrophs began with the origin of photosynthesis in the Archean Eon, perhaps as early as 3.8 billion years ago. Since that time, Earth's atmosphere, continents, and oceans have undergone substantial cyclic and secular physical, chemical, and biological changes that selected for different phytoplankton taxa. Early in the history of eukaryotic algae, between 1.6 and 1.2 billion years ago, an evolutionary schism gave rise to "green" (chlorophyll b-containing) and "red" (chlorophyll c-containing) plastid groups. Members of the "green" plastid line were important constituents of Neoproterozoic and Paleozoic oceans, and, ultimately, one green clade colonized land. By the mid-Mesozoic, the green line had become ecologically less important in the oceans. In its place, three groups of chlorophyll c-containing eukaryotes, the dinoflagellates, coccolithophorids, and diatoms, began evolutionary trajectories that have culminated in ecological dominance in the contemporary oceans. Breakup of the supercontinent Pangea, continental shelf flooding, and changes in ocean redox chemistry may all have contributed to this evolutionary transition. At the same time, the evolution of these modern eukaryotic taxa has influenced both the structure of marine food webs and global biogeochemical cycles.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-01
    Description: The silicoflagellates are a class of enigmatic chrysophytes characterized by netlike skeletons composed of opaline silica. Other major groups of siliceous plankton—the diatoms and radiolarians—exhibit evidence of decreasing size or silicification over the Cenozoic. We investigated trends in the silicoflagellate fossil record by constructing a species-level database of diversity and morphological metrics. This new database reveals a proliferation of silicoflagellate species with spined skeletons along with an increase in the mean number of spines per species over the Cenozoic. Although there is little change in skeleton size or silicification among species with spines, those without spines are larger than species with spines and exhibit a decrease in size toward the present. Increased grazing pressure combined with declining surface silicate availability may have shifted the costs and benefits of silicification, causing divergent responses in skeletal morphology between these different morphological lineages of silicoflagellates over time. We postulate that diminishing Cenozoic surface silicic acid availability may have predisposed large spineless silicoflagellate species to extinction, whereas increased grazing pressure may have contributed to the extinction of all remaining spineless species within the edible size range of grazers.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...